创建具有基于大小的重力的游戏对象
本文关键字:游戏 对象 于大小 创建 | 更新日期: 2023-09-27 18:19:59
我在c#和unity中构建了一个基于分形的对象生成器,它构建了对象的分支,然后使用碰撞器和刚体相互反弹。现在,他们互相撞击,并不断地移动,距离越来越远。我想做的是给每个物体分配一定程度的引力,这样即使它们在碰撞中被排斥,它们也会把自己拉回来。除了工作之外,我什么都做了,除了重力方面。有没有人有这方面的经验,不介意给我一些指导?谢谢
using UnityEngine;
using UnityEngine.UI;
using System.Collections;
public class BuildFractal : MonoBehaviour
{
public Mesh[] meshes;
public Material material;
public Material[,] materials;
private Rigidbody rigidbody;
public int maxDepth; // max children depth
private int depth;
public float childScale; // set scale of child objects
public float spawnProbability; // determine whether a branch is created or not
public float maxRotationSpeed; // set maximium rotation speed
private float rotationSpeed;
public float maxTwist;
public Text positionText;
// Create arrays for direction and orientation data
private static Vector3[] childDirections = {
Vector3.up,
Vector3.right,
Vector3.left,
Vector3.forward,
Vector3.back,
// Vector3.down
};
private static Quaternion[] childOrientations = {
Quaternion.identity,
Quaternion.Euler(0f, 0f, -90f),
Quaternion.Euler(0f, 0f, 90f),
Quaternion.Euler(90f, 0f, 0f),
Quaternion.Euler(-90f, 0f, 0f),
// Quaternion.Euler(180f, 0f, 0f)
};
private void Start ()
{
rotationSpeed = Random.Range(-maxRotationSpeed, maxRotationSpeed);
transform.Rotate(Random.Range(-maxTwist, maxTwist), 0f, 0f);
if (materials == null)
{
InitializeMaterials();
}
// Select from random range of meshes
gameObject.AddComponent<MeshFilter>().mesh = meshes[Random.Range(0, meshes.Length)];
// Select from random range of colors
gameObject.AddComponent<MeshRenderer>().material = materials[depth, Random.Range(0, 2)];
// Add a collider to each object
gameObject.AddComponent<SphereCollider>().isTrigger = false;
// Add Rigigbody to each object
gameObject.AddComponent<Rigidbody>();
gameObject.GetComponent<Rigidbody>().useGravity = false;
gameObject.GetComponent<Rigidbody>().mass = 1000;
// Create Fractal Children
if (depth < maxDepth)
{
StartCoroutine(CreateChildren());
}
}
private void Update ()
{
transform.Rotate(0f, rotationSpeed * Time.deltaTime, 0f);
}
private IEnumerator CreateChildren ()
{
for (int i = 0; i < childDirections.Length; i++)
{
if (Random.value < spawnProbability)
{
yield return new WaitForSeconds(Random.Range(0.1f, 1.5f));
new GameObject("Fractal Child").AddComponent<BuildFractal>().Initialize(this, i);
}
/*if (i == childDirections.Length)
{
DestroyChildren();
}*/
// positionText.text = transform.position.ToString(this);
}
}
private void Initialize (BuildFractal parent, int childIndex)
{
maxRotationSpeed = parent.maxRotationSpeed;
// copy mesh and material references from parent object
meshes = parent.meshes;
materials = parent.materials;
maxTwist = parent.maxTwist;
// set depth and scale based on variables defined in parent
maxDepth = parent.maxDepth;
depth = parent.depth + 1;
childScale = parent.childScale;
transform.parent = parent.transform; // set child transform to parent
// transform.localScale = Vector3.one * childScale;
transform.localScale = Vector3.one * Random.Range(childScale / 10, childScale * 1);
transform.localPosition = childDirections[childIndex] * (Random.Range((0.1f + 0.1f * childScale),(0.9f + 0.9f * childScale)));
transform.localRotation = childOrientations[childIndex];
spawnProbability = parent.spawnProbability;
}
private void InitializeMaterials ()
{
materials = new Material[maxDepth + 1, 2];
for (int i = 0; i <= maxDepth; i++)
{
float t = i / (maxDepth - 1f);
t *= t;
// Create a 2D array to hold color progressions
materials[i, 0] = new Material(material);
materials[i, 0].color = Color.Lerp(Color.gray, Color.white, t);
materials[i, 1] = new Material(material);
materials[i, 1].color = Color.Lerp(Color.white, Color.white, t);
}
// materials[maxDepth, 0].color = Color.white;
materials[maxDepth, 1].color = Color.white;
}
}
取决于重力模拟的准确性。假设模拟中的所有对象都具有相同的密度,则可以使用Mesh.bounds粗略估计它们的体积:
Vector3 size = myMesh.bounds.size;
float volume = size.x * size.y * size.z * scale; // scale could be childScale in your case
由于模拟是分形,因此必须在每次分形迭代中应用childScale。但是,如果网格的基础体积不变,则不必重新计算。
对于重力模拟:对于大量的对象,这可能会变得相当复杂。你必须模拟一个完整的重力场。
只计算两个相互作用的对象是相当简单的。施加在相互吸引物体上的力可以通过牛顿公式计算
F1=F2=G*m1*m2/r^2
(请参见:https://en.wikipedia.org/wiki/Gravitational_constant)
但是,在您的系统中,对象可能远远多于两个。您必须计算每个对象的上述关系——每个对象之间的关系。对于每个对象,您必须添加所有计算的力,然后应用产生的力。
假设场景中有N个对象,则必须对每个对象执行(N-1)个以上计算。这就产生了N^(N-1)计算,这将很快失控,尤其是如果你在分形结构中进行计算。
为了掌握这种巨大的复杂性,你可以引入一系列的影响,这样只有附近的物体才会相互影响。尽管这会进一步降低模拟的准确性。