我需要使用opencvsharp识别图像中的文本
本文关键字:图像 文本 识别 opencvsharp | 更新日期: 2023-09-27 18:27:32
我试图识别图像中的文本。
事实上,我正在尝试识别图像中的文本位置,然后将其转换为文本。
我发现了一些用c++编写的代码,我正试图将其转换为c#。你能帮我吗?
提取文本OpenCV
std::vector<cv::Rect> detectLetters(cv::Mat img)
{ std::vector<cv::Rect> boundRect;[enter image description here][1]
cv::Mat img_gray, img_sobel, img_threshold, element;
cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Sobel(img_gray, img_sobel, CV_8U, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
cv::threshold(img_sobel, img_threshold, 0, 255, CV_THRESH_OTSU+CV_THRESH_BINARY);
element = getStructuringElement(cv::MORPH_RECT, cv::Size(10, 15) );
cv::morphologyEx(img_threshold, img_threshold, CV_MOP_CLOSE, element); //Does the trick
std::vector< std::vector< cv::Point> > contours;
cv::findContours(img_threshold, contours, 0, 1);
std::vector<std::vector<cv::Point> > contours_poly( contours.size() );
for( int i = 0; i < contours.size(); i++ )
if (contours[i].size()>80)
{
cv::approxPolyDP( cv::Mat(contours[i]), contours_poly[i], 17, true );
cv::Rect appRect( boundingRect( cv::Mat(contours_poly[i]) ));
if (appRect.width>appRect.height)
boundRect.push_back(appRect);
}
return boundRect;
}
我试着把它转换成c#,但不起作用
private List<Rectangle> detectLetters(IntPtr img)
{
//cvtColor(img, img_gray, CV_BGR2GRAY);
List<Rectangle> boundRect = new List<Rectangle>();
//cv::Mat img_gray, img_sobel, img_threshold, element;
IntPtr
img_gray = IntPtr.Zero,
img_sobel= IntPtr.Zero,
img_threshold= IntPtr.Zero,
img_tmp = IntPtr.Zero,
element= IntPtr.Zero;
//cvtColor(img, img_gray, CV_BGR2GRAY);
CvInvoke.cvCvtColor(img, img_gray,COLOR_CONVERSION.CV_BGR2GRAY); //CV_BGR2GRAY);
//cv::Sobel(img_gray, img_sobel, CV_8U, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
CvInvoke.cvSobel(img_gray, img_sobel, 0, 1, 1);//, 3, 1, 0, cv.BORDER_DEFAULT);
//cv.threshold(img_sobel, img_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
CvInvoke.cvThreshold(img_sobel, img_threshold, 0, 255, THRESH.CV_THRESH_BINARY|THRESH.CV_THRESH_OTSU);
//element = getStructuringElement(cv.MORPH_RECT, cv.Size(10, 15));
element = CvInvoke.cvCreateStructuringElementEx(1,1,10,15,CV_ELEMENT_SHAPE.CV_SHAPE_RECT,element);// GetStructuringElement(
//cv.morphologyEx(img_threshold, img_threshold, CV_MOP_CLOSE, element); //Does the trick
CvInvoke.cvMorphologyEx(img_threshold,img_threshold,img_tmp,element,CV_MORPH_OP.CV_MOP_CLOSE,1);
//List<List<cv.Point>> contours = new List<List<cv.Point>>();
var contours = new List<IntPtr>();
//cv.findContours(img_threshold, contours, 0, 1);
CvInvoke.cvFindContours(img_threshold, element,ref ((IntPtr)contours[0]), 1, RETR_TYPE.CV_RETR_EXTERNAL, CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_NONE,new Point(0,0));
//std::vector<std::vector<cv::Point> > contours_poly( contours.size() );
var contours_poly = new List<List<Point>>(contours.Count);
//for( int i = 0; i < contours.size(); i++ )
for (int i = 0; i < contours.Count; i++)
{
//if (contours[i].size()>80)
if (contours[i].ToInt32() > 80)
{
//cv.approxPolyDP(Emgu.CV.Matrix<>(contours[i]), contours_poly[i], 17, true);
CvInvoke.cvApproxPoly(contours[i], 17,contours_poly[i],APPROX_POLY_TYPE.CV_POLY_APPROX_DP, 1,1);
//cv::Rect appRect( boundingRect( cv::Mat(contours_poly[i]) ));
Rectangle appRect = new Rectangle(CvInvoke.cvBoundingRect(contours_poly[i],false));
//if (appRect.width>appRect.height)
if (appRect.width > appRect.height)
{
//boundRect.push_back(appRect);
boundRect.Add(appRect);
}
}
}
//return boundRect;
return boundRect;
}
根据您要查找的文本的大小,您可能需要处理元素大小和ApprovPolyDP的变量,但此代码与原始代码非常接近,但使用OpenCvSharp语言。
static List<Rect> RunTextRecog(string inFile)
{
List<Rect> boundRect = new List<Rect>();
using (Mat img = new Mat(inFile))
using (Mat img_gray = new Mat())
using (Mat img_sobel = new Mat())
using (Mat img_threshold = new Mat())
{
Cv2.CvtColor(img, img_gray, ColorConversionCodes.BGR2GRAY);
Cv2.Sobel(img_gray, img_sobel, MatType.CV_8U, 1, 0, 3, 1, 0, BorderTypes.Default);
Cv2.Threshold(img_sobel, img_threshold, 0, 255, ThresholdTypes.Otsu | ThresholdTypes.Binary);
using (Mat element = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(10, 15)))
{
Cv2.MorphologyEx(img_threshold, img_threshold, MorphTypes.Close, element);
Point[][] edgesArray = img_threshold.Clone().FindContoursAsArray(RetrievalModes.External, ContourApproximationModes.ApproxNone);
foreach (Point[] edges in edgesArray)
{
Point[] normalizedEdges = Cv2.ApproxPolyDP(edges, 17, true);
Rect appRect = Cv2.BoundingRect(normalizedEdges);
boundRect.Add(appRect);
}
}
}
return boundRect;
}