具有限制持续时间和批量消费的异步生产者/消费者
本文关键字:异步 生产者 消费者 持续时间 有限制 | 更新日期: 2023-09-27 18:11:37
我正在尝试构建一个服务,该服务为许多异步客户端提供队列以发出请求并等待响应。我需要能够以每Y个持续时间X个请求来限制队列处理。例如:每秒50个web请求。这是一个第三方REST服务,我每秒只能发出X个请求。
发现了许多SO问题,这使我走上了使用TPL数据流的道路,我使用了transformblock来提供我的自定义节流,然后使用X数量的actionblock来并行完成任务。Action的实现似乎有点笨拙,所以想知道是否有更好的方法让我将Tasks传递到管道中,一旦完成就通知调用者。
我想知道是否有更好或更优化/更简单的方法来做我想要的?我的执行有什么明显的问题吗?我知道它缺少取消和异常处理,接下来我会这样做,但欢迎您的评论。
我已经扩展了Stephen Cleary的例子为我的数据流管道,并使用
svick的时间节流TransformBlock概念。我想知道我所建立的是否可以很容易地实现一个纯粹的SemaphoreSlim设计,这是基于时间的节流与最大的操作,我认为会使事情复杂化。
这是最新的实现。FIFO队列异步队列,我可以通过自定义动作。
public class ThrottledProducerConsumer<T>
{
private class TimerState<T1>
{
public SemaphoreSlim Sem;
public T1 Value;
}
private BufferBlock<T> _queue;
private IPropagatorBlock<T, T> _throttleBlock;
private List<Task> _consumers;
private static IPropagatorBlock<T1, T1> CreateThrottleBlock<T1>(TimeSpan Interval, Int32 MaxPerInterval)
{
SemaphoreSlim _sem = new SemaphoreSlim(MaxPerInterval);
return new TransformBlock<T1, T1>(async (x) =>
{
var sw = new Stopwatch();
sw.Start();
//Console.WriteLine($"Current count: {_sem.CurrentCount}");
await _sem.WaitAsync();
sw.Stop();
var now = DateTime.UtcNow;
var releaseTime = now.Add(Interval) - now;
//-- Using timer as opposed to Task.Delay as I do not want to await or wait for it to complete
var tm = new Timer((s) => {
var state = (TimerState<T1>)s;
//Console.WriteLine($"RELEASE: {state.Value} was released {DateTime.UtcNow:mm:ss:ff} Reset Sem");
state.Sem.Release();
}, new TimerState<T1> { Sem = _sem, Value = x }, (int)Interval.TotalMilliseconds,
-1);
/*
Task.Delay(delay).ContinueWith((t)=>
{
Console.WriteLine($"RELEASE(FAKE): {x} was released {DateTime.UtcNow:mm:ss:ff} Reset Sem");
//_sem.Release();
});
*/
//Console.WriteLine($"{x} was tramsformed in {sw.ElapsedMilliseconds}ms. Will release {now.Add(Interval):mm:ss:ff}");
return x;
},
//new ExecutionDataflowBlockOptions { BoundedCapacity = 1 });
//
new ExecutionDataflowBlockOptions { BoundedCapacity = 5, MaxDegreeOfParallelism = 10 });
}
public ThrottledProducerConsumer(TimeSpan Interval, int MaxPerInterval, Int32 QueueBoundedMax = 5, Action<T> ConsumerAction = null, Int32 MaxConsumers = 1)
{
var consumerOptions = new ExecutionDataflowBlockOptions { BoundedCapacity = 1, };
var linkOptions = new DataflowLinkOptions { PropagateCompletion = true, };
//-- Create the Queue
_queue = new BufferBlock<T>(new DataflowBlockOptions { BoundedCapacity = QueueBoundedMax, });
//-- Create and link the throttle block
_throttleBlock = CreateThrottleBlock<T>(Interval, MaxPerInterval);
_queue.LinkTo(_throttleBlock, linkOptions);
//-- Create and link the consumer(s) to the throttle block
var consumerAction = (ConsumerAction != null) ? ConsumerAction : new Action<T>(ConsumeItem);
_consumers = new List<Task>();
for (int i = 0; i < MaxConsumers; i++)
{
var consumer = new ActionBlock<T>(consumerAction, consumerOptions);
_throttleBlock.LinkTo(consumer, linkOptions);
_consumers.Add(consumer.Completion);
}
//-- TODO: Add some cancellation tokens to shut this thing down
}
/// <summary>
/// Default Consumer Action, just prints to console
/// </summary>
/// <param name="ItemToConsume"></param>
private void ConsumeItem(T ItemToConsume)
{
Console.WriteLine($"Consumed {ItemToConsume} at {DateTime.UtcNow}");
}
public async Task EnqueueAsync(T ItemToEnqueue)
{
await this._queue.SendAsync(ItemToEnqueue);
}
public async Task EnqueueItemsAsync(IEnumerable<T> ItemsToEnqueue)
{
foreach (var item in ItemsToEnqueue)
{
await this._queue.SendAsync(item);
}
}
public async Task CompleteAsync()
{
this._queue.Complete();
await Task.WhenAll(_consumers);
Console.WriteLine($"All consumers completed {DateTime.UtcNow}");
}
}
试验方法
public class WorkItem<T>
{
public TaskCompletionSource<T> tcs;
//public T respone;
public string url;
public WorkItem(string Url)
{
tcs = new TaskCompletionSource<T>();
url = Url;
}
public override string ToString()
{
return $"{url}";
}
}
public static void TestQueue()
{
Console.WriteLine("Created the queue");
var defaultAction = new Action<WorkItem<String>>(async i => {
var taskItem = ((WorkItem<String>)i);
Console.WriteLine($"Consuming: {taskItem.url} {DateTime.UtcNow:mm:ss:ff}");
//-- Assume calling another async method e.g. await httpClient.DownloadStringTaskAsync(url);
await Task.Delay(5000);
taskItem.tcs.SetResult($"{taskItem.url}");
//Console.WriteLine($"Consumed: {taskItem.url} {DateTime.UtcNow}");
});
var queue = new ThrottledProducerConsumer<WorkItem<String>>(TimeSpan.FromMilliseconds(2000), 5, 2, defaultAction);
var results = new List<Task>();
foreach (var no in Enumerable.Range(0, 20))
{
var workItem = new WorkItem<String>($"http://someurl{no}.com");
results.Add(queue.EnqueueAsync(workItem));
results.Add(workItem.tcs.Task);
results.Add(workItem.tcs.Task.ContinueWith(response =>
{
Console.WriteLine($"Received: {response.Result} {DateTime.UtcNow:mm:ss:ff}");
}));
}
Task.WhenAll(results).Wait();
Console.WriteLine("All Work Items Have Been Processed");
}
既然问,我已经创建了一个基于TPL数据流的ThrottledConsumerProducer类。我们对它进行了几天的测试,其中包括按顺序排队和完成的并发生产者,大约281k没有出现任何问题,但是我有一些我没有发现的漏洞。
- 我正在使用BufferBlock作为异步队列,这链接到:
- 一个TransformBlock,它提供了我需要的节流和阻塞。它与SempahoreSlim一起使用来控制最大请求数。当每个项目通过块时,它增加信号量,并安排一个任务在以后运行X持续时间,以释放一个信号量。这样,我就有了一个滑动窗口,每个持续时间有X个请求;这正是我想要的。由于TPL,我还利用了连接的并行性:
- ActionBlock(s),负责执行我需要的任务。
这些类是泛型的,所以如果其他人需要类似的东西,它可能会很有用。我没有写取消或错误处理,但我认为我应该把它标记为回答,以便继续进行。我很乐意看到一些替代方案和反馈,而不是将我的答案标记为可接受的答案。谢谢你的阅读。
注意:我从原始实现中删除了计时器,因为它正在做奇怪的事情,导致信号量释放超过最大值,我假设它是动态上下文错误,当我开始运行并发请求时发生。我用Task解决了这个问题。延迟调度信号量锁的释放。
已节流的生产者和消费者
public class ThrottledProducerConsumer<T>
{
private BufferBlock<T> _queue;
private IPropagatorBlock<T, T> _throttleBlock;
private List<Task> _consumers;
private static IPropagatorBlock<T1, T1> CreateThrottleBlock<T1>(TimeSpan Interval,
Int32 MaxPerInterval, Int32 BlockBoundedMax = 2, Int32 BlockMaxDegreeOfParallelism = 2)
{
SemaphoreSlim _sem = new SemaphoreSlim(MaxPerInterval, MaxPerInterval);
return new TransformBlock<T1, T1>(async (x) =>
{
//Log($"Transform blk: {x} {DateTime.UtcNow:mm:ss:ff} Semaphore Count: {_sem.CurrentCount}");
var sw = new Stopwatch();
sw.Start();
//Console.WriteLine($"Current count: {_sem.CurrentCount}");
await _sem.WaitAsync();
sw.Stop();
var delayTask = Task.Delay(Interval).ContinueWith((t) =>
{
//Log($"Pre-RELEASE: {x} {DateTime.UtcNow:mm:ss:ff} Semaphore Count {_sem.CurrentCount}");
_sem.Release();
//Log($"PostRELEASE: {x} {DateTime.UtcNow:mm:ss:ff} Semaphoere Count {_sem.CurrentCount}");
});
//},TaskScheduler.FromCurrentSynchronizationContext());
//Log($"Transformed: {x} in queue {sw.ElapsedMilliseconds}ms. {DateTime.Now:mm:ss:ff} will release {DateTime.Now.Add(Interval):mm:ss:ff} Semaphoere Count {_sem.CurrentCount}");
return x;
},
//-- Might be better to keep Bounded Capacity in sync with the semaphore
new ExecutionDataflowBlockOptions { BoundedCapacity = BlockBoundedMax,
MaxDegreeOfParallelism = BlockMaxDegreeOfParallelism });
}
public ThrottledProducerConsumer(TimeSpan Interval, int MaxPerInterval,
Int32 QueueBoundedMax = 5, Action<T> ConsumerAction = null, Int32 MaxConsumers = 1,
Int32 MaxThrottleBuffer = 20, Int32 MaxDegreeOfParallelism = 10)
{
//-- Probably best to link MaxPerInterval and MaxThrottleBuffer
// and MaxConsumers with MaxDegreeOfParallelism
var consumerOptions = new ExecutionDataflowBlockOptions { BoundedCapacity = 1, };
var linkOptions = new DataflowLinkOptions { PropagateCompletion = true, };
//-- Create the Queue
_queue = new BufferBlock<T>(new DataflowBlockOptions { BoundedCapacity = QueueBoundedMax, });
//-- Create and link the throttle block
_throttleBlock = CreateThrottleBlock<T>(Interval, MaxPerInterval);
_queue.LinkTo(_throttleBlock, linkOptions);
//-- Create and link the consumer(s) to the throttle block
var consumerAction = (ConsumerAction != null) ? ConsumerAction : new Action<T>(ConsumeItem);
_consumers = new List<Task>();
for (int i = 0; i < MaxConsumers; i++)
{
var consumer = new ActionBlock<T>(consumerAction, consumerOptions);
_throttleBlock.LinkTo(consumer, linkOptions);
_consumers.Add(consumer.Completion);
}
//-- TODO: Add some cancellation tokens to shut this thing down
}
/// <summary>
/// Default Consumer Action, just prints to console
/// </summary>
/// <param name="ItemToConsume"></param>
private void ConsumeItem(T ItemToConsume)
{
Log($"Consumed {ItemToConsume} at {DateTime.UtcNow}");
}
public async Task EnqueueAsync(T ItemToEnqueue)
{
await this._queue.SendAsync(ItemToEnqueue);
}
public async Task EnqueueItemsAsync(IEnumerable<T> ItemsToEnqueue)
{
foreach (var item in ItemsToEnqueue)
{
await this._queue.SendAsync(item);
}
}
public async Task CompleteAsync()
{
this._queue.Complete();
await Task.WhenAll(_consumers);
Console.WriteLine($"All consumers completed {DateTime.UtcNow}");
}
private static void Log(String messageToLog)
{
System.Diagnostics.Trace.WriteLine(messageToLog);
Console.WriteLine(messageToLog);
}
}
-用法示例-
通用工作项
public class WorkItem<Toutput,Tinput>
{
private TaskCompletionSource<Toutput> _tcs;
public Task<Toutput> Task { get { return _tcs.Task; } }
public Tinput InputData { get; private set; }
public Toutput OutputData { get; private set; }
public WorkItem(Tinput inputData)
{
_tcs = new TaskCompletionSource<Toutput>();
InputData = inputData;
}
public void Complete(Toutput result)
{
_tcs.SetResult(result);
}
public void Failed(Exception ex)
{
_tcs.SetException(ex);
}
public override string ToString()
{
return InputData.ToString();
}
}
创建在管道中执行的操作块
private Action<WorkItem<Location,PointToLocation>> CreateProcessingAction()
{
return new Action<WorkItem<Location,PointToLocation>>(async i => {
var sw = new Stopwatch();
sw.Start();
var taskItem = ((WorkItem<Location,PointToLocation>)i);
var inputData = taskItem.InputData;
//Log($"Consuming: {inputData.Latitude},{inputData.Longitude} {DateTime.UtcNow:mm:ss:ff}");
//-- Assume calling another async method e.g. await httpClient.DownloadStringTaskAsync(url);
await Task.Delay(500);
sw.Stop();
Location outData = new Location()
{
Latitude = inputData.Latitude,
Longitude = inputData.Longitude,
StreetAddress = $"Consumed: {inputData.Latitude},{inputData.Longitude} Duration(ms): {sw.ElapsedMilliseconds}"
};
taskItem.Complete(outData);
//Console.WriteLine($"Consumed: {taskItem.url} {DateTime.UtcNow}");
});
}
测试方法您需要为PointToLocation和Location提供您自己的实现。这只是一个如何在自己的类中使用它的例子。
int startRange = 0;
int nextRange = 1000;
ThrottledProducerConsumer<WorkItem<Location,PointToLocation>> tpc;
private void cmdTestPipeline_Click(object sender, EventArgs e)
{
Log($"Pipeline test started {DateTime.Now:HH:mm:ss:ff}");
if(tpc == null)
{
tpc = new ThrottledProducerConsumer<WorkItem<Location, PointToLocation>>(
//1010, 2, 20000,
TimeSpan.FromMilliseconds(1010), 45, 100000,
CreateProcessingAction(),
2,45,10);
}
var workItems = new List<WorkItem<Models.Location, PointToLocation>>();
foreach (var i in Enumerable.Range(startRange, nextRange))
{
var ptToLoc = new PointToLocation() { Latitude = i + 101, Longitude = i + 100 };
var wrkItem = new WorkItem<Location, PointToLocation>(ptToLoc);
workItems.Add(wrkItem);
wrkItem.Task.ContinueWith(t =>
{
var loc = t.Result;
string line = $"[Simulated:{DateTime.Now:HH:mm:ss:ff}] - {loc.StreetAddress}";
//txtResponse.Text = String.Concat(txtResponse.Text, line, System.Environment.NewLine);
//var lines = txtResponse.Text.Split(new string[] { System.Environment.NewLine},
// StringSplitOptions.RemoveEmptyEntries).LongCount();
//lblLines.Text = lines.ToString();
//Log(line);
});
//}, TaskScheduler.FromCurrentSynchronizationContext());
}
startRange += nextRange;
tpc.EnqueueItemsAsync(workItems);
Log($"Pipeline test completed {DateTime.Now:HH:mm:ss:ff}");
}