对于Watson's Speech-To-Text Unity SDK,如何指定关键字?

本文关键字:SDK 何指定 关键字 Unity Speech-To-Text Watson 对于 | 更新日期: 2023-09-27 18:12:23

我正在尝试在沃森的语音到文本Unity SDK中指定关键字,但我不确定如何做到这一点。

详细信息页没有显示示例(参见这里:https://www.ibm.com/watson/developercloud/doc/speech-to-text/output.shtml),

和其他论坛帖子都是为Java应用程序编写的(参见这里:如何为IBM Watson语音文本服务指定语音关键字?)。

我已经尝试在"识别"函数中创建的RecognizeRequest类中硬编码这些值,但没有成功:

**EDIT -这个函数永远不会被调用——**

public bool Recognize(AudioClip clip, OnRecognize callback)
    {
        if (clip == null)
            throw new ArgumentNullException("clip");
        if (callback == null)
            throw new ArgumentNullException("callback");
        RESTConnector connector = RESTConnector.GetConnector(SERVICE_ID, "/v1/recognize");
        if (connector == null)
            return false;
        RecognizeRequest req = new RecognizeRequest();
        req.Clip = clip;
        req.Callback = callback;
        req.Headers["Content-Type"] = "audio/wav";
        req.Send = WaveFile.CreateWAV(clip);
        if (req.Send.Length > MAX_RECOGNIZE_CLIP_SIZE)
        {
            Log.Error("SpeechToText", "AudioClip is too large for Recognize().");
            return false;
        }
        req.Parameters["model"] = m_RecognizeModel;
        req.Parameters["continuous"] = "false";
        req.Parameters["max_alternatives"] = m_MaxAlternatives.ToString();
        req.Parameters["timestamps"] = m_Timestamps ? "true" : "false";
        req.Parameters["word_confidence"] = m_WordConfidence ? "true" :false";
        //these "keywords" and "keywords_threshold" and "keywordsThreshold" parameters
        //are just my guess for how to set these values            
        req.Parameters["keywords"] = new string[] {"fun", "match", "test" };
        req.Parameters["keywordsThreshold"] = .2;
        req.Parameters["keywords_threshold"] = .2;
        //end my test insertions
        req.OnResponse = OnRecognizeResponse;
        return connector.Send(req);
    }

,但返回的SpeechRecognitionEvent结果值不包含任何keywords_result。这就是我的目标。我正试图查看keyword_result对象中每个关键字的信心,但keywords_result对象返回为null

private void OnRecognize(SpeechRecognitionEvent result) {
    Debug.Log("Recognizing!");
    m_ResultOutput.SendData(new SpeechToTextData(result));
    if (result != null && result.results.Length > 0) {
        if (m_Transcript != null)
            m_Transcript.text = "";
        foreach (var res in result.results) {
            //the res.keywords_result comes back as null
            foreach (var keyword in res.keywords_result.keyword) {
                string text = keyword.normalized_text;
                float confidence = keyword.confidence;
                Debug.Log(text + ": " + confidence);                                            
            }
        }
    }
}

有没有人成功地实现了关键字置信度评估与沃森的语音到文本SDK在Unity或c# ?欢迎大家提出意见和建议。

PS这是我的第一篇文章:)

对于Watson's Speech-To-Text Unity SDK,如何指定关键字?

我需要在"SendStart"函数中指定关键字,如下所示:

private void SendStart() {
        if (m_ListenSocket == null)
            throw new WatsonException("SendStart() called with null connector.");
        Dictionary<string, object> start = new Dictionary<string, object>();
        start["action"] = "start";
        start["content-type"] = "audio/l16;rate=" + m_RecordingHZ.ToString() + ";channels=1;";
        start["continuous"] = EnableContinousRecognition;
        start["max_alternatives"] = m_MaxAlternatives;
        start["interim_results"] = EnableInterimResults;
        start["word_confidence"] = m_WordConfidence;
        start["timestamps"] = m_Timestamps;
        //specify keywords here
        start["keywords"] = keywordsToCheck.ToArray();
        start["keywords_threshold"] = 0.05;
        //end additions here 
        m_ListenSocket.Send(new WSConnector.TextMessage(Json.Serialize(start)));
        m_LastStartSent = DateTime.Now;
    }

并编写一些代码来正确解析" parserecognizerresponse "函数中的keyword_results:

private SpeechRecognitionEvent ParseRecognizeResponse(IDictionary resp){
        if (resp == null)
            return null;

        List<SpeechRecognitionResult> results = new List<SpeechRecognitionResult>();
        IList iresults = resp["results"] as IList;
        if (iresults == null)
            return null;
        foreach (var r in iresults)
        {
            IDictionary iresult = r as IDictionary;
            if (iresults == null)
                continue;
            SpeechRecognitionResult result = new SpeechRecognitionResult();
            //added this section, starting here
            IDictionary iKeywords_result = iresult["keywords_result"] as IDictionary;
            result.keywords_result = new KeywordResults();
            List<KeywordResult> keywordResults = new List<KeywordResult>();
            foreach (string key in keywordsToCheck) {
                if (iKeywords_result[key] != null) {
                    IList keyword_Results = iKeywords_result[key] as IList;
                    if (keyword_Results == null) {
                        continue;
                    }
                    foreach (var res in keyword_Results) {
                        IDictionary kw_resultDic = res as IDictionary;
                        KeywordResult keyword_Result = new KeywordResult();
                        keyword_Result.confidence = (double)kw_resultDic["confidence"];
                        keyword_Result.end_time = (double)kw_resultDic["end_time"];
                        keyword_Result.start_time = (double)kw_resultDic["start_time"];
                        keyword_Result.normalized_text = (string)kw_resultDic["normalized_text"];
                        keywordResults.Add(keyword_Result);
                    }
                }
            }
            result.keywords_result.keyword = keywordResults.ToArray();                   
            //ends here
            result.final = (bool)iresult["final"];
            IList ialternatives = iresult["alternatives"] as IList;
            if (ialternatives == null)
                continue;
            List<SpeechRecognitionAlternative> alternatives = new List<SpeechRecognitionAlternative>();
            foreach (var a in ialternatives)
            {
                IDictionary ialternative = a as IDictionary;
                if (ialternative == null)
                    continue;
                SpeechRecognitionAlternative alternative = new SpeechRecognitionAlternative();
                alternative.transcript = (string)ialternative["transcript"];
                if (ialternative.Contains("confidence"))
                    alternative.confidence = (double)ialternative["confidence"];
                if (ialternative.Contains("timestamps"))
                {
                    IList itimestamps = ialternative["timestamps"] as IList;
                    TimeStamp[] timestamps = new TimeStamp[itimestamps.Count];
                    for (int i = 0; i < itimestamps.Count; ++i)
                    {
                        IList itimestamp = itimestamps[i] as IList;
                        if (itimestamp == null)
                            continue;
                        TimeStamp ts = new TimeStamp();
                        ts.Word = (string)itimestamp[0];
                        ts.Start = (double)itimestamp[1];
                        ts.End = (double)itimestamp[2];
                        timestamps[i] = ts;
                    }
                    alternative.Timestamps = timestamps;
                }
                if (ialternative.Contains("word_confidence"))
                {
                    IList iconfidence = ialternative["word_confidence"] as IList;
                    WordConfidence[] confidence = new WordConfidence[iconfidence.Count];
                    for (int i = 0; i < iconfidence.Count; ++i)
                    {
                        IList iwordconf = iconfidence[i] as IList;
                        if (iwordconf == null)
                            continue;
                        WordConfidence wc = new WordConfidence();
                        wc.Word = (string)iwordconf[0];
                        wc.Confidence = (double)iwordconf[1];
                        confidence[i] = wc;
                    }
                    alternative.WordConfidence = confidence;
                }
                alternatives.Add(alternative);
            }
            result.alternatives = alternatives.ToArray();
            results.Add(result);
        }
        return new SpeechRecognitionEvent(results.ToArray());                        
    }

所以现在,当onrecognition通过这个SpeechRecognitionEvent时,我已经改变了显示替代词和它们的置信度得分的代码,显示关键字结果和它们的置信度得分,像这样:

private void OnRecognize(SpeechRecognitionEvent result) {
    //Debug.Log("Recognizing!");
    m_ResultOutput.SendData(new SpeechToTextData(result));
    if (result != null && result.results.Length > 0) {
        if (m_Transcript != null)
            m_Transcript.text = "";
        foreach (var res in result.results) {
            //start keyword recognition changes here
            if (res.keywords_result != null) {
                if (res.keywords_result.keyword != null) {
                    foreach (var keyword in res.keywords_result.keyword) {
                        m_Transcript.text += string.Format("{0} ({1}, {2:0.00})'n",
                            keyword.normalized_text, res.final ? "Final" : "Interim", keyword.confidence);
                    }
                }
            }
            //end here                
        }
    }
}

注意,使用关键字结果置信度值比做一些硬编码检查,看看沃森得到的替代词是否与你的关键字匹配,然后使用置信度值更有价值。当检查keyword_results.keyword[]时,返回的置信度值要高得多。置信度值,因为它已经根据这些词进行了检查。这是完成此过程并解析SpeechRecognitionEvent结果值以正确包含keyword_result值的动力。

关于一些背景,我正在为有阅读障碍的儿童创造一个节奏游戏来学习构词法,所以把吉他英雄想象成芝麻街。