使用列表实现AVL树

本文关键字:AVL 实现 列表 | 更新日期: 2023-09-27 18:12:29

所以我已经实现了一个使用参数化列表的二叉搜索树,即

List<Node> tree = new List<>();

树工作得很好。节点本身并不知道它的父节点或子节点。这是因为我根据索引(例如

)计算位置。
                         If i is the index of some None N then:
                                N's left child is in tree[i*2] 
                                N's right child is in tree[(i*2)+1]

这个二叉树工作得很好。但现在我想把AVL树的特征加进去。我在这一点上卡住了,因为我不知道如何在列表上进行旋转。在旋转时,我如何移动新根结点的子结点?事实是它们必须改变指标,不是吗?在List上这样做也给我带来了一个问题,即每次添加节点时,显示树将需要循环遍历List。这种情况不会在O(logn)内发生,破坏AVL树的整个点。

我在c#中做这个。我只是想知道如何使这个AVL树有效地使用列表或任何基于数组的数据结构是可索引的,而不是链表。这很重要。如果能提供一些代码来说明的话,我将不胜感激。

使用列表实现AVL树

在数组/列表中表示树的方式对于堆数据结构是常见的,但它实际上不适用于任何其他类型的树。特别是,对于AVL树,您不能(有效地)这样做,因为每次旋转都需要太多的复制。

我在一个没有malloc可用的嵌入式应用程序中需要这个。我没有做过任何类型的数据结构算法实现之前,我试图如果它可以做到。在编写代码时,我意识到我必须移动很多东西。我寻找了一个补救措施,并得到了这篇文章。

感谢Chris的回复,我不会再花时间在这上面了。我会找到其他方法来实现我所需要的。

我相信我找到了答案,诀窍是在列表中上下移动子树,以便在旋转时不会覆盖有效节点。

void shiftUp(int indx, int towards) {
    if (indx >= size || nodes[indx].key == NULL) {
        return;
    }
    nodes[towards] = nodes[indx];
    nodes[indx].key = NULL;
    shiftUp(lChild(indx), lChild(towards));
    shiftUp(rChild(indx), rChild(towards));
}
void shiftDown(int indx, int towards) {
    if (indx >= size || nodes[indx].key == NULL) {
        return;
    }
    // increase size so we can finish shifting down
    while (towards >= size) { // while in the case we don't make it big enough
        enlarge();
    }
    shiftDown(lChild(indx), lChild(towards));
    shiftDown(rChild(indx), rChild(towards));
    nodes[towards] = nodes[indx];
    nodes[indx].key = NULL;
}

正如您所看到的,这是通过递归地探索每个子树直到NULL(在这里定义为-1)节点,然后一个接一个向上或向下复制每个元素来完成的。

有了这个,我们可以定义四种类型的旋转命名根据维基百科tree_rebalance .gif

void rotateRight(int rootIndx) {
    int pivotIndx = lChild(rootIndx);
    // shift the roots right subtree down to the right
    shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
    nodes[rChild(rootIndx)] = nodes[rootIndx]; // move root too
    // move the pivots right child to the roots right child's left child
    shiftDown(rChild(pivotIndx), lChild(rChild(rootIndx)));
    // move the pivot up to the root
    shiftUp(pivotIndx, rootIndx);
    // adjust balances of nodes in their new positions
    nodes[rootIndx].balance--; // old pivot
    nodes[rChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}
void rotateLeft(int rootIndx) {
    int pivotIndx = rChild(rootIndx);
    // Shift the roots left subtree down to the left
    shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
    nodes[lChild(rootIndx)] = nodes[rootIndx]; // move root too
    // move the pivots left child to the roots left child's right child
    shiftDown(lChild(pivotIndx), rChild(lChild(rootIndx)));
    // move the pivot up to the root
    shiftUp(pivotIndx, rootIndx);
    // adjust balances of nodes in their new positions
    nodes[rootIndx].balance++; // old pivot
    nodes[lChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}

// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateLeftRight(int rootIndx) {
    int newRootIndx = rChild(lChild(rootIndx));
    // shift the root's right subtree down to the right
    shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
    nodes[rChild(rootIndx)] = nodes[rootIndx];
    // move the new roots right child to the roots right child's left child
    shiftUp(rChild(newRootIndx), lChild(rChild(rootIndx)));
    // move the new root node into the root node
    nodes[rootIndx] = nodes[newRootIndx];
    nodes[newRootIndx].key = NULL;
    // shift up to where the new root was, it's left child
    shiftUp(lChild(newRootIndx), newRootIndx);
    // adjust balances of nodes in their new positions
    if (nodes[rootIndx].balance == -1) { // new root
        nodes[rChild(rootIndx)].balance = 0; // old root
        nodes[lChild(rootIndx)].balance = 1; // left from old root
    } else if (nodes[rootIndx].balance == 0) {
        nodes[rChild(rootIndx)].balance = 0;
        nodes[lChild(rootIndx)].balance = 0;
    } else {
        nodes[rChild(rootIndx)].balance = -1;
        nodes[lChild(rootIndx)].balance = 0;
    }
    nodes[rootIndx].balance = 0;
}
// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateRightLeft(int rootIndx) {
    int newRootIndx = lChild(rChild(rootIndx));
    // shift the root's left subtree down to the left
    shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
    nodes[lChild(rootIndx)] = nodes[rootIndx];
    // move the new roots left child to the roots left child's right child
    shiftUp(lChild(newRootIndx), rChild(lChild(rootIndx)));
    // move the new root node into the root node
    nodes[rootIndx] = nodes[newRootIndx];
    nodes[newRootIndx].key = NULL;
    // shift up to where the new root was it's right child
    shiftUp(rChild(newRootIndx), newRootIndx);
    // adjust balances of nodes in their new positions
    if (nodes[rootIndx].balance == 1) { // new root
        nodes[lChild(rootIndx)].balance = 0; // old root
        nodes[rChild(rootIndx)].balance = -1; // right from old root
    } else if (nodes[rootIndx].balance == 0) {
        nodes[lChild(rootIndx)].balance = 0;
        nodes[rChild(rootIndx)].balance = 0;
    } else {
        nodes[lChild(rootIndx)].balance = 1;
        nodes[rChild(rootIndx)].balance = 0;
    }
    nodes[rootIndx].balance = 0;
}

注意,在移动会覆盖节点的情况下,我们只复制单个节点

为了提高效率,必须将平衡值存储在每个节点中,因为获取每个节点的高度差将非常昂贵

int getHeight(int indx) {
    if (indx >= size || nodes[indx].key == NULL) {
        return 0;
    } else {
        return max(getHeight(lChild(indx)) + 1, getHeight(rChild(indx)) + 1);
    }
}

虽然这样做要求我们在修改列表时更新受影响节点的余额,但这可以通过只更新严格必要的情况来提高效率。对于删除,此调整为

// requires non null node index and a balance factor baised off whitch child of it's parent it is or 0
private void deleteNode(int i, short balance) {
    int lChildIndx = lChild(i);
    int rChildIndx = rChild(i);
    count--;
    if (nodes[lChildIndx].key == NULL) {
        if (nodes[rChildIndx].key == NULL) {
            // root or leaf
            nodes[i].key = NULL;
            if (i != 0) {
                deleteBalance(parent(i), balance);
            }
        } else {
            shiftUp(rChildIndx, i);
            deleteBalance(i, 0);
        }
    } else if (nodes[rChildIndx].key == NULL) {
        shiftUp(lChildIndx, i);
        deleteBalance(i, 0);
    } else {
        int successorIndx = rChildIndx;
        // replace node with smallest child in the right subtree
        if (nodes[lChild(successorIndx)].key == NULL) {
            nodes[successorIndx].balance = nodes[i].balance;
            shiftUp(successorIndx, i);
            deleteBalance(successorIndx, 1);
        } else {
            int tempLeft;
            while ((tempLeft = lChild(successorIndx)) != NULL) {
                successorIndx = tempLeft;
            }
            nodes[successorIndx].balance = nodes[i].balance;
            nodes[i] = nodes[successorIndx];
            shiftUp(rChild(successorIndx), successorIndx);
            deleteBalance(parent(successorIndx), -1);
        }
    }
}

插入也是一样,这里是

void insertBalance(int pviotIndx, short balance) {
    while (pviotIndx != NULL) {
        balance = (nodes[pviotIndx].balance += balance);
        if (balance == 0) {
            return;
        } else if (balance == 2) {
            if (nodes[lChild(pviotIndx)].balance == 1) {
                rotateRight(pviotIndx);
            } else {
                rotateLeftRight(pviotIndx);
            }
            return;
        } else if (balance == -2) {
            if (nodes[rChild(pviotIndx)].balance == -1) {
                rotateLeft(pviotIndx);
            } else {
                rotateRightLeft(pviotIndx);
            }
            return;
        }
        int p = parent(pviotIndx);
        if (p != NULL) {
            balance = lChild(p) == pviotIndx ? (short)1 : (short)-1;
        }
        pviotIndx = p;
    }
}

正如你所看到的,这只是使用了普通的"节点"数组,因为我从c代码中翻译了它,给出了gitHub数组-avl-tree和优化和平衡(我将在评论中发布一个链接),但在列表中工作非常相似

最后,我对AVL树或最佳实现有最小的了解,所以我不声称这是无bug或最有效的,但至少对于我的目的,已经通过了我的初步测试