根据连续调用之间的运行时间优化批处理大小
本文关键字:优化 批处理 运行时间 连续 调用 之间 | 更新日期: 2023-09-27 18:20:28
我已经开始尝试创建以下内容:
public static IEnumerable<List<T>> OptimizedBatches<T>(this IEnumerable<T> items)
然后这个扩展方法的客户端会这样使用它:
foreach (var list in extracter.EnumerateAll().OptimizedBatches())
{
// at some unknown batch size, process time starts to
// increase at an exponential rate
}
这里有一个例子:
batch length time
1 100ms
2 102ms
4 110ms
8 111ms
16 118ms
32 119ms
64 134ms
128 500ms <-- doubled length but time it took more than doubled
256 1100ms <-- oh no!!
根据以上内容,最佳批次长度是64,因为64/134是长度/时间的最佳比率。
因此,问题是使用什么算法根据迭代器步骤之间的连续时间自动选择最佳批处理长度?
这是我到目前为止所拥有的——它还没有完成。。。
class LengthOptimizer
{
private Stopwatch sw;
private int length = 1;
private List<RateRecord> rateRecords = new List<RateRecord>();
public int Length
{
get
{
if (sw == null)
{
length = 1;
sw = new Stopwatch();
}
else
{
sw.Stop();
rateRecords.Add(new RateRecord { Length = length, ElapsedMilliseconds = sw.ElapsedMilliseconds });
length = rateRecords.OrderByDescending(c => c.Rate).First().Length;
}
sw.Start();
return length;
}
}
}
struct RateRecord
{
public int Length { get; set; }
public long ElapsedMilliseconds { get; set; }
public float Rate { get { return ((float)Length) / ElapsedMilliseconds; } }
}
我在这里看到的主要问题是创建"优化量表",也就是说,为什么你认为32->119ms是可以接受的,256->1100ms是不可以接受的;或者为什么某些配置比其他配置更好。
一旦完成,算法将非常简单:只需返回每个输入条件的排名值,并根据"哪个值更高"做出决定。
创建这个量表的第一步是找出能更好地描述你想要的理想行为的变量。一个简单的第一种方法:长度/时间。也就是说,根据您的输入:
batch length time ratio1
1 100ms 0.01
2 102ms 0.019
4 110ms 0.036
8 111ms 0.072
16 118ms 0.136
32 119ms 0.269
64 134ms 0.478
128 500ms 0.256
256 1100ms 0.233
比率1越大越好。从逻辑上讲,长度为32的0.269与长度为128的0.256不同,因此必须考虑更多的信息。
您可以创建一个更复杂的排名比率,更好地加权两个相关变量(例如,尝试不同的指数)。但我认为解决这个问题的最佳方法是创建一个"区域"系统,并根据它计算通用排名。例如:
Zone 1 -> length from 1 to 8; ideal ratio for this zone = 0.1
Zone 2 -> length from 9 to 32; ideal ratio for this zone = 0.3
Zone 3 -> length from 33 to 64; ideal ratio for this zone = 0.45
Zone 4 -> length from 65 to 256; ideal ratio for this zone = 0.35
与每个配置相关联的排名将是将给定比率1相对于给定区域的理想值的结果。
2 102ms 0.019 -> (zone 1) 0.019/0.1 = 0.19 (or 1.9 in a 0-10 scale)
16 118ms 0.136 -> (zone 2) 0.136/0.3 = 0.45 (or 4.5 in a 0-10 scale)
etc.
这些值可能会被比较,因此您会自动知道第二种情况比第一种要好得多。
这只是一个简单的例子,但我想这为这里的真正问题提供了足够好的见解:建立一个准确的排名,从而完美地确定哪种配置更好。
我会采用varocarbas建议的排名方法。
以下是让您开始的初步实现:
public sealed class DataFlowOptimizer<T>
{
private readonly IEnumerable<T> _collection;
private RateRecord bestRate = RateRecord.Default;
private uint batchLength = 1;
private struct RateRecord
{
public static RateRecord Default = new RateRecord { Length = 1, ElapsedTicks = 0 };
private float _rate;
public int Length { get; set; }
public long ElapsedTicks { get; set; }
public float Rate
{
get
{
if(_rate == default(float) && ElapsedTicks > 0)
{
_rate = ((float)Length) / ElapsedTicks;
}
return _rate;
}
}
}
public DataFlowOptimizer(IEnumerable<T> collection)
{
_collection = collection;
}
public int BatchLength { get { return (int)batchLength; } }
public float Rate { get { return bestRate.Rate; } }
public IEnumerable<IList<T>> GetBatch()
{
var stopwatch = new Stopwatch();
var batch = new List<T>();
var benchmarks = new List<RateRecord>(5);
IEnumerator<T> enumerator = null;
try
{
enumerator = _collection.GetEnumerator();
uint count = 0;
stopwatch.Start();
while(enumerator.MoveNext())
{
if(count == batchLength)
{
benchmarks.Add(new RateRecord { Length = BatchLength, ElapsedTicks = stopwatch.ElapsedTicks });
var currentBatch = batch.ToList();
batch.Clear();
if(benchmarks.Count == 10)
{
var currentRate = benchmarks.Average(x => x.Rate);
if(currentRate > bestRate.Rate)
{
bestRate = new RateRecord { Length = BatchLength, ElapsedTicks = (long)benchmarks.Average(x => x.ElapsedTicks) };
batchLength = NextPowerOf2(batchLength);
}
// Set margin of error at 10%
else if((bestRate.Rate * .9) > currentRate)
{
// Shift the current length and make sure it's >= 1
var currentPowOf2 = ((batchLength >> 1) | 1);
batchLength = PreviousPowerOf2(currentPowOf2);
}
benchmarks.Clear();
}
count = 0;
stopwatch.Restart();
yield return currentBatch;
}
batch.Add(enumerator.Current);
count++;
}
}
finally
{
if(enumerator != null)
enumerator.Dispose();
}
stopwatch.Stop();
}
uint PreviousPowerOf2(uint x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x - (x >> 1);
}
uint NextPowerOf2(uint x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return (x+1);
}
}
LinqPad中的示例程序:
public IEnumerable<int> GetData()
{
return Enumerable.Range(0, 100000000);
}
void Main()
{
var optimizer = new DataFlowOptimizer<int>(GetData());
foreach(var batch in optimizer.GetBatch())
{
string.Format("Length: {0} Rate {1}", optimizer.BatchLength, optimizer.Rate).Dump();
}
}
- 描述目标函数
f
,该函数将批量大小s
和运行时t(s)
映射到分数f(s,t(s))
- 尝试许多
s
值,并为每个值评估f(s,t(s))
- 选择最大化
f
的s
值