使用Aforge.net的感知器神经网络的OCR回答错误

本文关键字:OCR 错误 神经网络 Aforge net 感知 使用 | 更新日期: 2023-09-27 17:49:21

我尝试用Aforge的感知器制作OCR。Net中的c#。我用9张30*30的二进制图片学习了我的网络。但在结果中,它把所有东西都识别为"C"。这是代码:

    private void button1_Click(object sender, EventArgs e)
    {
        AForge.Neuro.ActivationNetwork network = new AForge.Neuro.ActivationNetwork(new AForge.Neuro.BipolarSigmoidFunction(2), 900, 3);
        network.Randomize();
        AForge.Neuro.Learning.PerceptronLearning learning = new AForge.Neuro.Learning.PerceptronLearning(network);
        learning.LearningRate =1 ;
        double[][] input = new double[9][];
        for (int i = 0; i < 9; i++)
        {
            input[i] = new double[900];
        }
   //Reading A images
        for (int i = 1; i <= 3; i++)
        {
            Bitmap a = AForge.Imaging.Image.FromFile(path + "''a" + i + ".bmp");
            for (int j = 0; j < 30; j++)
                for (int k = 0; k < 30; k++)
                {
                    if (a.GetPixel(j, k).ToKnownColor() == KnownColor.White)
                    {
                        input[i-1][j * 10 + k] = -1;
                    }
                    else
                        input[i-1][j * 10 + k] = 1;
                }
           // showImage(a);
        }
   //Reading B images
        for (int i = 1; i <= 3; i++)
        {
            Bitmap a = AForge.Imaging.Image.FromFile(path + "''b" + i + ".bmp");
            for (int j = 0; j < 30; j++)
                for (int k = 0; k < 30; k++)
                {
                    if (a.GetPixel(j , k).ToKnownColor() == KnownColor.White)
                    {
                        input[i + 2][j * 10 + k] = -1;
                    }
                    else
                        input[i + 2][j * 10 + k] = 1;
                }
           // showImage(a);
        }
   //Reading C images
        for (int i = 1; i <= 3; i++)
        {
            Bitmap a = AForge.Imaging.Image.FromFile(path + "''c" + i + ".bmp");
            for (int j = 0; j < 30; j++)
                for (int k = 0; k < 30; k++)
                {
                    if (a.GetPixel(j , k ).ToKnownColor() == KnownColor.White)
                    {
                        input[i + 5][j * 10 + k] = -1;
                    }
                    else
                        input[i + 5][j * 10 + k] = 1;
                }
           // showImage(a);
        }
        bool needToStop = false;
        int iteration = 0;
        while (!needToStop)
        {
            double error = learning.RunEpoch(input, new double[9][] { new double[3] { 1, -1, -1 },new double[3] { 1, -1, -1 },new double[3] { 1, -1, -1 },//A
                new double[3] { -1, 1, -1 },new double[3] { -1, 1, -1 },new double[3] { -1, 1, -1 },//B
                new double[3] { -1, -1, 1 },new double[3] { -1, -1, 1 },new double[3] { -1, -1, 1 } }//C
                    /*new double[9][]{ input[0],input[0],input[0],input[1],input[1],input[1],input[2],input[2],input[2]}*/
                );
            //learning.LearningRate -= learning.LearningRate / 1000;
            if (error == 0)
                break;
            else if (iteration < 1000)
                iteration++;
            else
                needToStop = true;
            System.Diagnostics.Debug.WriteLine("{0} {1}", error, iteration);
        }
        Bitmap b = AForge.Imaging.Image.FromFile(path + "''b1.bmp");
    //Reading A Sample to test Netwok
        double[] sample = new double[900];
        for (int j = 0; j < 30; j++)
            for (int k = 0; k < 30; k++)
            {
                if (b.GetPixel(j , k ).ToKnownColor() == KnownColor.White)
                {
                    sample[j * 30 + k] = -1;
                }
                else
                    sample[j * 30 + k] = 1;
            }
        foreach (double d in network.Compute(sample))
            System.Diagnostics.Debug.WriteLine(d);//Output is Always C = {-1,-1,1}
    }

我真的很想知道为什么它回答错误

使用Aforge.net的感知器神经网络的OCR回答错误

input结构中加载初始30x30图像到双[900]数组时,您正在使用以下计算:

for (int j = 0; j < 30; j++)
    for (int k = 0; k < 30; k++)
    {
        if (a.GetPixel(j, k).ToKnownColor() == KnownColor.White)
            input[i-1][j * 10 + k] = -1;
        else
            input[i-1][j * 10 + k] = 1;
    }

您的偏移计算在这里是错误的。您需要将j * 10 + k更改为j * 30 + k,否则将得到无效结果。稍后,在加载测试图像时使用正确的偏移计算,这就是为什么它不能与损坏的样本正确匹配。

您应该编写一个方法来将位图加载到double[900]数组中,并为每个图像调用它,而不是多次编写相同的代码。这有助于减少这样的问题,即两段代码给出了不同的结果,但应该返回相同的结果。

我试过你的代码。这对我也有帮助,非常感谢。我可以让你的代码工作做一些改变,从图像中获取位数组。这是我使用的方法。

`
        private double[] GetImageData(Bitmap bmp)
        {
        double[] imageData = null;
        //Make the image grayscale
        Grayscale filter = new Grayscale(0.2125, 0.7154, 0.0721);
        bmp = filter.Apply(bmp);
        //Binarize the image
        AForge.Imaging.Filters.Threshold thFilter = new AForge.Imaging.Filters.Threshold(128);
        thFilter.ApplyInPlace(bmp);
        int height = bmp.Height;
        int width = bmp.Width;
        imageData = new double[height * width];
        int imagePointer = 0;
        System.Diagnostics.Debug.WriteLine("Height : " + height);
        System.Diagnostics.Debug.WriteLine("Width  : " + width);
        for (int i = 0; i < height; i++)
        {
            for (int j = 0; j < width; j++)
            {
                System.Diagnostics.Debug.Write(string.Format("({0}  , {1})     Color : {2}'n", i, j, bmp.GetPixel(i, j)));
                //Identify the black points of the image
                if (bmp.GetPixel(i, j) == Color.FromArgb(255, 0,  0, 0))
                {
                    imageData[imagePointer] = 1;
                }
                else
                {
                    imageData[imagePointer] = 0;
                }
                imagePointer++;
            }
            System.Diagnostics.Debug.WriteLine("");
        }
        System.Diagnostics.Debug.WriteLine("Bits  : " + imagePointer );
        return imageData;
    }`

希望这将帮助。谢谢。

try this

double error = learning.RunEpoch(input, new double[9][] { new double[3] **{ 1, -1, -1 }**,new double[3] **{ -1, 1, -1 }**,new double[3] **{ -1, -1, 1 }**,//A
                new double[3] **{ 1, -1, -1 }**,new double[3] **{ -1, 1, -1 }**,new double[3] **{ -1, -1, 1 }**,//B
                new double[3] **{ 1, -1, -1 }**,new double[3] **{ -1, 1, -1 }**,new double[3] **{ -1, -1, 1 }** }//C
                );

或者这样

double[][] output = new double[patterns][];
            for (int j = 0; j < patterns; j++)
            {
                output[j] = new double[patterns];
                for (int i = 0; i < patterns; i++)
                {
                    if (i != j)
                    {
                        output[j][i] = -1;
                    }
                    else
                    {
                        output[j][i] = 1;
                    }
                }
            }

double error = learning.RunEpoch(input,output)
double[] netout = neuralNet.Compute(pattern);
 int maxIndex = 0;
            double max = netout[0];
            for (int i = 1; i < netout.Length; i++)
            {
                if (netout[i] > max)
                {
                    max = netout[i];
                    maxIndex = i;
                }
            }

如果maxIndex=0的答案是A

如果maxIndex=1的答案是B

如果maxIndex=2的答案是C

我也认为你必须从图像中创建矩阵并使用它作为图案,例如20/20或15/15或小,你的30/30是大的。

我使用不同的方式获取图像方案。我将图像分割为20/20,如果矩形中的一个像素是黑色(或其他你想要的颜色),在矩阵中保存1,否则0。

我替换了所有的像素,之后我只有两种颜色,白色和黑色,我可以操纵轮廓。

private void Cmd_ReplaceColors(ref WriteableBitmap Par_WriteableBitmap,int Par_Limit=180)
        {
            for (int y = 0; y < Par_WriteableBitmap.PixelHeight; y++)
            {
                for (int x = 0; x < Par_WriteableBitmap.PixelWidth; x++)
                {
                    Color color = Par_WriteableBitmap.GetPixel(x, y);
                    if (color == Colors.White)
                    {
                    }
                    else
                    {
                        if (color.R < Par_Limit)
                        {
                            Par_WriteableBitmap.SetPixel(x, y, Colors.Black);
                        }
                        else
                        {
                            Par_WriteableBitmap.SetPixel(x, y, Colors.White);
                        }
                    }
                }
            }
            Par_WriteableBitmap.Invalidate();
        }

1000次迭代在我看来是很小的,最好是100,000次:)