使用任务计划程序的应用会快速耗尽内存
本文关键字:内存 应用 任务 计划 程序 | 更新日期: 2023-09-27 18:34:13
该应用程序解析某个目录中的文件,同时将新文件添加到目录中。我使用ConcurrentQueue并尝试将工作拆分为内核数。因此,如果有文件要处理 - 它应该同时处理多达 4(核心(文件。然而,该应用程序在处理 10-30 个文件后在几秒钟内运行 OOM。我看到内存消耗迅速增长到 ~1.5GB,而不是出现 OOM 错误。我要做任务计划程序,所以我可能做错了什么。文件解析是通过对文件运行一些.exe来完成的,该文件使用 <5mb 或 ram。每次计时器线程经过时,任务计划程序都会运行。但它甚至在计时器第二次过去之前就运行 OOM。
private void OnTimedEvent(object source, ElapsedEventArgs e)
{
DirectoryInfo info = new DirectoryInfo(AssemblyDirectory);
FileInfo[] allSrcFiles = info.GetFiles("*.dat").OrderBy(p => p.CreationTime).ToArray();
var validSrcFiles = allSrcFiles.Where(p => (DateTime.Now - p.CreationTime) > TimeSpan.FromSeconds(60));
var newFilesToParse = validSrcFiles.Where(f => !ProcessedFiles.Contains(f.Name));
if (newFilesToParse.Any()) Console.WriteLine("Adding " + newFilesToParse.Count() + " files to the Queue");
foreach (var file in newFilesToParse)
{
FilesToParseQueue.Enqueue(file);
ProcessedFiles.Add(file.Name);
}
if (!busy)
{
if (FilesToParseQueue.Any())
{
busy = true;
Console.WriteLine("");
Console.WriteLine("There are " + FilesToParseQueue.Count + " files in queue. Processing...");
}
var scheduler = new LimitedConcurrencyLevelTaskScheduler(coresCount); //4
TaskFactory factory = new TaskFactory(scheduler);
while (FilesToParseQueue.Any())
{
factory.StartNew(() =>
{
FileInfo file;
if (FilesToParseQueue.TryDequeue(out file))
{
//Dequeue();
ParseFile(file);
}
});
}
if (!FilesToParseQueue.Any())
{
busy = false;
Console.WriteLine("Finished processing Files in the Queue. Waiting for new files...");
}
}
}
有文件要处理,您的代码就会继续创建新的Task
,并且它的速度要快得多,可以处理文件。但它没有其他限制(如目录中的文件数量(,这就是为什么它会很快耗尽内存的原因。
一个简单的解决方法是将出队列移到循环之外:
while (true)
{
FileInfo file;
if (FilesToParseQueue.TryDequeue(out file))
{
factory.StartNew(() => ParseFile(file));
}
else
{
break;
}
}
如果每个内核仅创建一个Task
并使用Task
内的循环处理文件,则会获得更好的性能。
这种问题(将多个工作单元排队,并希望并行处理它们(非常适合 TPL 数据流:
private async void OnTimedEvent(object source, ElapsedEventArgs e)
{
DirectoryInfo info = new DirectoryInfo(AssemblyDirectory);
FileInfo[] allSrcFiles = info.GetFiles("*.dat").OrderBy(p => p.CreationTime).ToArray();
var validSrcFiles = allSrcFiles.Where(p => (DateTime.Now - p.CreationTime) > TimeSpan.FromSeconds(60));
var newFilesToParse = validSrcFiles.Where(f => !ProcessedFiles.Contains(f.Name));
if (newFilesToParse.Any()) Console.WriteLine("Adding " + newFilesToParse.Count() + " files to the Queue");
var blockOptions = new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = coresCount,
};
var block = new ActionBlock<FileInfo>(ParseFile, blockOptions);
var filesToParseCount = 0;
foreach (var file in newFilesToParse)
{
block.Post(file);
ProcessedFiles.Add(file.Name);
++filesToParseCount;
}
Console.WriteLine("There are " + filesToParseCount + " files in queue. Processing...");
block.Complete();
await block.Completion;
Console.WriteLine("Finished processing Files in the Queue. Waiting for new files...");
}
基本解决方案
实际上,您可以通过将其剥离到基本要素来修复代码,如下所示:
// This is technically a misnomer. It should be
// called "FileNamesQueuedForProcessing" or similar.
// Non-thread-safe. Assuming timer callback access only.
private readonly HashSet<string> ProcessedFiles = new HashSet<string>();
private readonly LimitedConcurrencyLevelTaskScheduler LimitedConcurrencyScheduler = new LimitedConcurrencyLevelTaskScheduler(Environment.ProcessorCount);
private void OnTimedEvent(object source, ElapsedEventArgs e)
{
DirectoryInfo info = new DirectoryInfo(AssemblyDirectory);
// Slightly rewritten to cut down on allocations.
FileInfo[] newFilesToParse = info
.GetFiles("*.dat")
.Where(f =>
(DateTime.Now - f.CreationTime) > TimeSpan.FromSeconds(60) && // I'd consider removing this filter.
!ProcessedFiles.Contains(f.Name))
.OrderBy(p => p.CreationTime)
.ToArray();
if (newFilesToParse.Length != 0) Console.WriteLine("Adding " + newFilesToParse.Count() + " files to the Queue");
foreach (FileInfo file in newFilesToParse)
{
// Fire and forget.
// You can add the resulting task to a shared thread-safe collection
// if you want to observe completion/exceptions/cancellations.
Task.Factory.StartNew(
() => ParseFile(file)
, CancellationToken.None
, TaskCreationOptions.DenyChildAttach
, LimitedConcurrencyScheduler
);
ProcessedFiles.Add(file.Name);
}
}
请注意,我没有自己做任何类型的负载平衡,而是依靠LimitedConcurrencyLevelTaskScheduler
来执行广告 - 也就是说,立即接受Task.Factory.StartNew
上的所有工作项,在内部对它们进行排队,并在将来的某个时间点在最多 [N = 最大并行度] 线程池线程上处理它们。
附言我假设OnTimedEvent
总是在同一线程上触发。如果没有,则需要进行一些小的更改以确保线程安全:
private void OnTimedEvent(object source, ElapsedEventArgs e)
{
lock (ProcessedFiles)
{
// As above.
}
}
替代解决方案
现在,这里有一个稍微新颖的方法:我们摆脱计时器并LimitedConcurrencyLevelTaskScheduler
并将所有处理封装在一个单一的模块化管道中怎么样?会有很多阻塞代码(除非你打破TPL数据流 - 但我在这里坚持使用基类库类型(,但是阶段之间的消息传递非常简单,它使设计非常吸引人(当然在我看来(。
private async Task PipelineAsync()
{
const int MAX_FILES_TO_BE_QUEUED = 16;
using (BlockingCollection<FileInfo> queue = new BlockingCollection<FileInfo>(boundedCapacity: MAX_FILES_TO_BE_QUEUED))
{
Task producer = Task.Run(async () =>
{
try
{
while (true)
{
DirectoryInfo info = new DirectoryInfo(AssemblyDirectory);
HashSet<string> namesOfFilesQeueuedForProcessing = new HashSet<string>();
FileInfo[] newFilesToParse = info
.GetFiles("*.dat")
.Where(f =>
(DateTime.Now - f.CreationTime) > TimeSpan.FromSeconds(60) &&
!ProcessedFiles.Contains(f.Name))
.OrderBy(p => p.CreationTime) // Processing order is not guaranteed.
.ToArray();
foreach (FileInfo file in newFilesToParse)
{
// This will block if we reach bounded capacity thereby throttling
// the producer (meaning we'll never overflow the handover collection).
queue.Add(file);
namesOfFilesQeueuedForProcessing.Add(file.Name);
}
await Task.Delay(TimeSpan.FromSeconds(60)).ConfigureAwait(false);
}
}
finally
{
// Exception? Cancellation? We'll let the
// consumer know that it can wind down.
queue.CompleteAdding();
}
});
Task consumer = Task.Run(() =>
{
ParallelOptions options = new ParallelOptions {
MaxDegreeOfParallelism = Environment.ProcessorCount
};
Parallel.ForEach(queue.GetConsumingEnumerable(), options, file => ParseFile(file));
});
await Task.WhenAll(producer, consumer).ConfigureAwait(false);
}
}
这种模式的一般形式在Stephen Toub的"并行编程模式"中描述,第55页。我强烈建议您看一看。
这里的权衡是您将因使用BlockingCollection<T>
和Parallel.ForEach
而执行的阻塞量。不过,管道作为一个概念的好处很多:新阶段(Task
实例(易于添加,完成和取消易于连接,观察生产者和消费者异常,并且所有可变状态都是令人愉快的本地。