线性使用格式
本文关键字:格式 线性 | 更新日期: 2023-09-27 18:34:19
我正在通过以下nuget包在我的C#代码中使用liblinear的.NET实现:https://www.nuget.org/packages/Liblinear/
但是在 liblinear 的自述文件中,x 的格式是:
struct problem
描述了这个问题:
struct problem
{
int l, n;
int *y;
struct feature_node **x;
double bias;
};
where `l` is the number of training data. If bias >= 0, we assume
that one additional feature is added to the end of each data
instance. `n` is the number of feature (including the bias feature
if bias >= 0). `y` is an array containing the target values. (integers
in classification, real numbers in regression) And `x` is an array
of pointers, each of which points to a sparse representation (array
of feature_node) of one training vector.
For example, if we have the following training data:
LABEL ATTR1 ATTR2 ATTR3 ATTR4 ATTR5
----- ----- ----- ----- ----- -----
1 0 0.1 0.2 0 0
2 0 0.1 0.3 -1.2 0
1 0.4 0 0 0 0
2 0 0.1 0 1.4 0.5
3 -0.1 -0.2 0.1 1.1 0.1
and bias = 1, then the components of problem are:
l = 5
n = 6
y -> 1 2 1 2 3
x -> [ ] -> (2,0.1) (3,0.2) (6,1) (-1,?)
[ ] -> (2,0.1) (3,0.3) (4,-1.2) (6,1) (-1,?)
[ ] -> (1,0.4) (6,1) (-1,?)
[ ] -> (2,0.1) (4,1.4) (5,0.5) (6,1) (-1,?)
[ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (6,1) (-1,?)
但是,在显示 java 实现的示例中:https://gist.github.com/hodzanassredin/6682771
problem.x <- [|
[|new FeatureNode(1,0.); new FeatureNode(2,1.)|]
[|new FeatureNode(1,2.); new FeatureNode(2,0.)|]
|]// feature nodes
problem.y <- [|1.;2.|] // target values
这意味着他的数据集是:
1 0 1
2 2 0
因此,他没有按照 liblinear 的稀疏格式存储节点。有没有人知道用于自由线性实现的 x 的正确格式?
虽然它没有完全解决你提到的库,但我可以为你提供一个替代方案。这Accord.NET Framework最近将LIBLINEAR的所有算法整合到其机器学习中命名空间。它也可以通过NuGet获得。
在此库中,从内存中数据创建线性支持向量机的直接语法为
// Create a simple binary AND
// classification problem:
double[][] problem =
{
// a b a + b
new double[] { 0, 0, 0 },
new double[] { 0, 1, 0 },
new double[] { 1, 0, 0 },
new double[] { 1, 1, 1 },
};
// Get the two first columns as the problem
// inputs and the last column as the output
// input columns
double[][] inputs = problem.GetColumns(0, 1);
// output column
int[] outputs = problem.GetColumn(2).ToInt32();
// However, SVMs expect the output value to be
// either -1 or +1. As such, we have to convert
// it so the vector contains { -1, -1, -1, +1 }:
//
outputs = outputs.Apply(x => x == 0 ? -1 : 1);
创建问题后,可以使用以下方法学习线性 SVM
// Create a new linear-SVM for two inputs (a and b)
SupportVectorMachine svm = new SupportVectorMachine(inputs: 2);
// Create a L2-regularized L2-loss support vector classification
var teacher = new LinearDualCoordinateDescent(svm, inputs, outputs)
{
Loss = Loss.L2,
Complexity = 1000,
Tolerance = 1e-5
};
// Learn the machine
double error = teacher.Run(computeError: true);
// Compute the machine's answers for the learned inputs
int[] answers = inputs.Apply(x => Math.Sign(svm.Compute(x)));
但是,这假定您的数据已在内存中。如果您希望从磁盘,从 libsvm 稀疏格式的文件中,您可以使用框架的 SparseReader 类。有关如何使用它的示例可以在下面找到:
// Suppose we are going to read a sparse sample file containing
// samples which have an actual dimension of 4. Since the samples
// are in a sparse format, each entry in the file will probably
// have a much smaller number of elements.
//
int sampleSize = 4;
// Create a new Sparse Sample Reader to read any given file,
// passing the correct dense sample size in the constructor
//
SparseReader reader = new SparseReader(file, Encoding.Default, sampleSize);
// Declare a vector to obtain the label
// of each of the samples in the file
//
int[] labels = null;
// Declare a vector to obtain the description (or comments)
// about each of the samples in the file, if present.
//
string[] descriptions = null;
// Read the sparse samples and store them in a dense vector array
double[][] samples = reader.ReadToEnd(out labels, out descriptions);
之后,可以使用samples
和labels
向量作为问题的输入和输出,分别。
我希望它有所帮助。
免责声明:我是这个库的作者。我真诚地希望回答这个问题对OP很有用,因为不久前我也遇到了同样的问题。如果版主认为这看起来像垃圾邮件,请随时删除。但是,我只是发布这个,因为我认为它可能帮助他人。我什至在搜索现有的 C# 时错误地遇到了这个问题LIBSVM 的实现,而不是 LIBLINEAR。