在C#中使用Stanford NLP库,当试图获得情绪(积极/消极)时,它总是返回-1!知道为什么吗
本文关键字:消极 返回 为什么 积极 Stanford NLP | 更新日期: 2023-09-27 18:06:25
我正在尝试使用Stanford Core NLP来检查一个语句是正的还是负的。
我在Java中找到了一些在线参考,并能够将缺失部分中的/代码转换为C#。
在试图获得情绪得分时,我总是得到-1作为返回值。
我想这可能是因为我无法转换
Tree tree = sentence.get(SentimentCoreAnnotations.AnnotatedTree.class);
与.NET相当。
java.lang.Class treeClass = new edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation().getClass();
Tree tree = (Tree)sentence.get(treeClass);
这是完整的代码:
var jarRoot = @"D:'Core NLP Files'stanford-corenlp-full-2015-04-20'stanford-corenlp-full-2015-04-20'stanford-corenlp-3.5.2-models";
// Text for processing
var text = txtInp.Text;
// Annotation pipeline configuration
var props = new java.util.Properties();
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
props.setProperty("sutime.binders", "0");
props.setProperty("ner.useSUTime", "false");
// We should change current directory, so D:'Core NLP Files'stanford-corenlp-full-2015-04-20'stanford-corenlp-full-2015-04-20 could find all the model files automatically
var curDir = Environment.CurrentDirectory;
Directory.SetCurrentDirectory(jarRoot);
var pipeline = new StanfordCoreNLP(props);
Directory.SetCurrentDirectory(curDir);
// Annotation
var annotation = new edu.stanford.nlp.pipeline.Annotation(text);
pipeline.annotate(annotation);
// Result - Pretty Print
using (var stream = new ByteArrayOutputStream())
{
pipeline.prettyPrint(annotation, new PrintWriter(stream));
//Analyze the statement as positive or negative
int mainSentiment = 0;
int longest = 0;
String[] sentimentText = { "Very Negative","Negative", "Neutral", "Positive", "Very Positive"};
NumberFormat NF = new DecimalFormat("0.0000");
//for (CoreMap sentence : document.get(CoreAnnotations.SentencesAnnotation.class))
var sentences = annotation.get(new CoreAnnotations.SentencesAnnotation().getClass()) as ArrayList;
foreach(CoreMap sentence in sentences )
{
java.lang.Class treeClass = new edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation().getClass();
Tree tree = (Tree)sentence.get(treeClass);
**int sentiment = RNNCoreAnnotations.getPredictedClass(tree);**
String partText = sentence.ToString();
label1.Text = "Sentence: '" + partText + "' is rather " + sentimentText[sentiment];
if (partText.Length > longest)
{
mainSentiment = sentiment;
longest = partText.Length;
}
}
if (mainSentiment == 2 || mainSentiment > 4 || mainSentiment < 0) {
label1.Text = ("Overall it was sort of neutral review");
}
else if (mainSentiment > 2) {
label1.Text = ("Overall we are happy");
}
else {
label1.Text = ("Bottom line. We are displeased");
}
stream.close();
}
}
你知道为什么我可能会得到-1作为情绪的回报值吗?
这是更新后的代码:-
Tree tree = (Tree)sentence.get(typeof(edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation));
int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
树的值-{(ROOT(S(NP(NN矩阵(((VP(VBZ is((NP(DT a((JJ good((NN movie((((}
在试图确定情绪时,仍获得-1的返回值。
Tree tree =(Tree)sentence.get(typeof(SentimentCoreAnnotations.SentimentAnnotatedTree));
int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
使用这个作为代码,我进行了测试。它有效。
您忘记将情感注释器添加到注释器列表中,这就是为什么结果仍然是-1。
首先更新代码:
Tree tree =(Tree)sentence.get(typeof(SentimentCoreAnnotations.SentimentAnnotatedTree));
int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
然后你还需要更改这部分代码:
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref, sentiment");
我已经测试过了,它有效!
等价于"class"字段的C#是"typeof"运算符:
Tree tree = sentence.get(typeof(SentimentCoreAnnotations.AnnotatedTree));