c#中查找字符串匹配列表的最佳比较算法

本文关键字:最佳 比较 算法 列表 串匹配 查找 字符 字符串 | 更新日期: 2023-09-27 17:52:43

假设我有一个10万个单词的列表。我想找出一个给定的字符串是否与列表中的任何单词匹配,我想以最快的方式完成它。我还想知道是否有其他单词,由该字符串中的第一个字符开始,出现在列表中。

例如:

假设你有一个字符串"icedtgg"

"我"集成电路"冰"冰"icedt"icedtg"icedtgg"

我正在尝试想出一个最优的比较算法,告诉我以下单词是否在我的列表中。

到目前为止,我的100,000个单词的列表存储在

Dicitonary<char, List<string>> WordList;

其中char是单词的第一个字符,List<string>是所有以该字符开头的单词。

所以WordList['a']包含所有以"a"开头的单词("ape","apple","art"等),"b"包含所有以"b"开头的单词,等等。

因为我知道我所有的单词都以"I"开头,我可以首先将我的解决方案从100,000个单词缩小到仅以"I"开头的单词。

List<string> CurrentWordList = WordList['i'];

现在我检查

if( CurrentWordList[0].Length == 1 )

那么我知道我的第一个字符串是一个匹配" I ",因为" I "将是列表中的第一个单词。这些列表事先按字母顺序排序,以免减慢匹配速度。

任何想法?

*不,这不是一个HW的任务,我是一个专业的软件架构师,试图找到一个最佳匹配算法的乐趣/爱好/游戏开发。

c#中查找字符串匹配列表的最佳比较算法

我决定添加这个答案,不是因为它是您问题的最佳解决方案,而是为了说明两种相对简单的可能解决方案,并且与您似乎正在遵循的方法有些一致。

下面的(未优化的)示例提供了一个极其简单的前缀树实现,它为每个消耗的字符使用一个节点。

public class SimplePrefixTrie
{
    private readonly Node _root = new Node(); // root represents empty string.
    private class Node
    {
        public Dictionary<char, Node> Children;
        public bool IsTerminal; // whether a full word ends here.
        public Node Find(string word, int index)
        {
            var child = default(Node);
            if (index < word.Length && Children != null)
                Children.TryGetValue(word[index], out child);
            return child;
        }
        public Node Add(string word, int toConsume)
        {
            var child = default(Node);
            if (toConsume == word.Length)
                this.IsTerminal = true;
            else if (Children == null || !Children.TryGetValue(word[toConsume], out child))
            {
                if (Children == null)
                    Children = new Dictionary<char, Node>();
                Children[word[toConsume]] = child = new Node();
            }
            return child;
        }
    }
    public void AddWord(string word)
    {
        var ndx = 0;
        var cur = _root;
        while (cur != null)
            cur = cur.Add(word, ndx++);
    }
    public IEnumerable<string> FindWordsMatchingPrefixesOf(string searchWord)
    {
        var ndx = 0;
        var cur = _root;
        while (cur != null)
        {
            if (cur.IsTerminal)
                yield return searchWord.Substring(0, ndx);
            cur = cur.Find(searchWord, ndx++);
        }
    }
}

下面还添加了一个压缩前缀树的简单实现。它遵循与上面示例几乎相同的方法,但是存储共享的前缀部分,而不是单个字符。当现有存储的前缀变为共享时,它将拆分节点,并将其拆分为两个部分。

public class SimpleCompressedPrefixTrie
{
    private readonly Node _root = new Node();
    private class Node
    {
        private Dictionary<char, Node> _children;
        public string PrefixValue = string.Empty;
        public bool IsTerminal;
        public Node Add(string word, ref int startIndex)
        {
            var n = FindSharedPrefix(word, startIndex);
            startIndex += n;
            if (n == PrefixValue.Length) // full prefix match
            {
                if (startIndex == word.Length) // full match
                    IsTerminal = true;
                else
                    return AddToChild(word, ref startIndex);
            }
            else // partial match, need to split this node's prefix.
                SplittingAdd(word, n, ref startIndex);
            return null;
        }
        public Node Find(string word, ref int startIndex, out int matchLen)
        {
            var n = FindSharedPrefix(word, startIndex);
            startIndex += n;
            matchLen = -1;
            if (n == PrefixValue.Length)
            {
                if (IsTerminal)
                    matchLen = startIndex;
                var child = default(Node);
                if (_children != null && startIndex < word.Length && _children.TryGetValue(word[startIndex], out child))
                {
                    startIndex++; // consumed map key character.
                    return child;
                }
            }
            return null;
        }
        private Node AddToChild(string word, ref int startIndex)
        {
            var key = word[startIndex++]; // consume the mapping character
            var nextNode = default(Node);
            if (_children == null)
                _children = new Dictionary<char, Node>();
            else if (_children.TryGetValue(key, out nextNode))
                return nextNode;
            var remainder = word.Substring(startIndex);
            _children[key] = new Node() { PrefixValue = remainder, IsTerminal = true };
            return null; // consumed.
        }
        private void SplittingAdd(string word, int n, ref int startIndex)
        {
            var curChildren = _children;
            _children = new Dictionary<char, Node>();
            _children[PrefixValue[n]] = new Node()
            {
                PrefixValue = this.PrefixValue.Substring(n + 1),
                IsTerminal = this.IsTerminal,
                _children = curChildren
            };
            PrefixValue = PrefixValue.Substring(0, n);
            IsTerminal = startIndex == word.Length;
            if (!IsTerminal)
            {
                var prefix = word.Length > startIndex + 1 ? word.Substring(startIndex + 1) : string.Empty;
                _children[word[startIndex]] = new Node() { PrefixValue = prefix, IsTerminal = true };
                startIndex++;
            }
        }
        private int FindSharedPrefix(string word, int startIndex)
        {
            var n = Math.Min(PrefixValue.Length, word.Length - startIndex);
            var len = 0;
            while (len < n && PrefixValue[len] == word[len + startIndex])
                len++;
            return len;
        }
    }
    public void AddWord(string word)
    {
        var ndx = 0;
        var cur = _root;
        while (cur != null)
            cur = cur.Add(word, ref ndx);
    }
    public IEnumerable<string> FindWordsMatchingPrefixesOf(string searchWord)
    {
        var startNdx = 0;
        var cur = _root;
        while (cur != null)
        {
            var matchLen = 0;
            cur = cur.Find(searchWord, ref startNdx, out matchLen);
            if (matchLen > 0)
                yield return searchWord.Substring(0, matchLen);
        };
    }
}

用法示例:

var trie = new SimplePrefixTrie(); // or new SimpleCompressedPrefixTrie();
trie.AddWord("hello");
trie.AddWord("iced");
trie.AddWord("i");
trie.AddWord("ice");
trie.AddWord("icecone");
trie.AddWord("dtgg");
trie.AddWord("hicet");
foreach (var w in trie.FindWordsMatchingPrefixesOf("icedtgg"))
    Console.WriteLine(w);
与输出:

i
ice
iced

UPDATE:选择正确的数据结构很重要

我认为一个更新可以提供一些价值,说明选择一个适合问题的数据结构是多么重要,以及涉及到什么样的权衡。因此,我创建了一个小型基准应用程序,与基准参考实现相比,它可以测试到目前为止为这个问题提供的答案中的策略。

  • Naive:是最简单的Naive解决方案。
  • JimMischel:是基于这个答案的方法。
  • MattyMerrix:是基于你自己的回答。
  • JimMattyDSL:结合了'JimMischel'和'MattyMerrix'方法,并在排序列表中使用更优的二进制字符串搜索。
  • SimpleTrieCompessedTrie基于本回答中描述的两种实现。
完整的基准测试代码可以在这个要点中找到。使用包含10,000、100,000和1,000,000(随机生成的字符序列)单词的字典运行它并搜索5,000个术语的所有前缀匹配的结果是:

将5000个单词匹配到最大长度为25的10000个词条的字典

       Method              Memory (MB)         Build Time (s)        Lookup Time (s)
        Naive          0.64-0.64, 0.64     0.001-0.002, 0.001     6.136-6.312, 6.210
   JimMischel          0.84-0.84, 0.84     0.013-0.018, 0.016     0.083-0.113, 0.102
  JimMattyDSL          0.80-0.81, 0.80     0.013-0.018, 0.016     0.008-0.011, 0.010
   SimpleTrie       24.55-24.56, 24.56     0.042-0.056, 0.051     0.002-0.002, 0.002
CompessedTrie          1.84-1.84, 1.84     0.003-0.003, 0.003     0.002-0.002, 0.002
  MattyMerrix          0.83-0.83, 0.83     0.017-0.017, 0.017     0.034-0.034, 0.034

将5000个单词匹配到最大长度为25的100000个词条的字典

       Method              Memory (MB)         Build Time (s)        Lookup Time (s)
        Naive          6.01-6.01, 6.01     0.024-0.026, 0.025  65.651-65.758, 65.715
   JimMischel          6.32-6.32, 6.32     0.232-0.236, 0.233     1.208-1.254, 1.235
  JimMattyDSL          5.95-5.96, 5.96     0.264-0.269, 0.266     0.050-0.052, 0.051
   SimpleTrie    226.49-226.49, 226.49     0.932-0.962, 0.951     0.004-0.004, 0.004
CompessedTrie       16.10-16.10, 16.10     0.101-0.126, 0.111     0.003-0.003, 0.003
  MattyMerrix          6.15-6.15, 6.15     0.254-0.269, 0.259     0.414-0.418, 0.416

将5000个单词匹配到最大长度为25的1000000个词条的字典

       Method              Memory (MB)         Build Time (s)        Lookup Time (s)
   JimMischel       57.69-57.69, 57.69     3.027-3.086, 3.052  16.341-16.415, 16.373
  JimMattyDSL       60.88-60.88, 60.88     3.396-3.484, 3.453     0.399-0.400, 0.399
   SimpleTrie 2124.57-2124.57, 2124.57  11.622-11.989, 11.860     0.006-0.006, 0.006
CompessedTrie    166.59-166.59, 166.59     2.813-2.832, 2.823     0.005-0.005, 0.005
  MattyMerrix       62.71-62.73, 62.72     3.230-3.270, 3.251     6.996-7.015, 7.008

可以看到,(非空间优化的)尝试所需的内存要高得多。对于所有测试的实现,它增加了字典的大小O(N)。

正如预期的那样,尝试的查找时间或多或少是恒定的:O(k),仅取决于搜索条件的长度。对于其他实现,时间将根据要搜索的字典的大小而增加。

请注意,可以为这个问题构建更优的实现,这将接近O(k)的搜索时间,并允许更紧凑的存储和更少的内存占用。如果你映射到一个简化的字母表(例如。只有'A'-'Z'),这也是可以利用的。

所以你只想在字典中找到作为输入字符串前缀的单词?您可以比所提出的任何方法更有效地做到这一点。这只是一个修改后的合并。

如果您的单词列表由一个按首字母键入的字典组成,并且每个条目包含以该字母开头的单词的排序列表,则此操作可以完成。最坏的情况是0 (n + m),其中n是以字母开头的单词数,m是输入字符串的长度。

var inputString = "icegdt";
// get list of words that start with the first character
var wordsList = MyDictionary[input_string[0]];
// find all words that are prefixes of the input string
var iInput = 0;
var iWords = 0;
var prefix = inputString.Substring(0, iInput+1);
while (iInput < inputString.Length && iWords < wordsList.Count)
{
    if (wordsList[iWords] == prefix)
    {
        // wordsList[iWords] is found!
        ++iWords;
    }
    else if (wordsList[iWords] > prefix)
    {
        // The current word is alphabetically after the prefix.
        // So we need the next character.
        ++iInput;
        if (iInput < inputString.Length)
        {
            prefix = inputString.Substring(0, iInput+1);
        }
    }
    else
    {
        // The prefix is alphabetically after the current word.
        // Advance the current word.
        ++iWord;
    }
}

如果这就是您想要做的(查找作为输入字符串前缀的字典单词),那么按第一个字符索引字典就没有特别的理由了。给定一个排序好的单词列表,您可以对第一个字母进行二分搜索以找到起点。这将比字典查找花费稍微更多的时间,但是与搜索单词列表查找匹配所花费的时间相比,时间差异将非常小。此外,排序后的单词列表比字典方法占用更少的内存。

如果要进行不区分大小写的比较,请将比较代码更改为:

    var result = String.Compare(wordsList[iWords], prefix, true);
    if (result == 0)
    {
        // wordsList[iWords] is found!
        ++iWords;
    }
    else if (result > 0)
    {

还将每次迭代的字符串比较次数减少到每次迭代恰好一次。

while (x < str.Length-1)
{
    if (ChrW(10) == GetChar(str, x) && ChrW(13) == GetChar(str, x+1))
     {
       // x+2 - This new line
     }
   x++;
}

这是我的第一次尝试,我想把它发布出去,以防我今天无法完成。

 public class CompareHelper
 {
    //Should always be sorted in alphabetical order.
    public static Dictionary<char, List<string>> MyDictionary;
    public static List<string> CurrentWordList;
    public static List<string> MatchedWordList;
    //The word we are trying to find matches for.
    public static char InitChar;
    public static StringBuilder ThisWord;
    /// <summary>
    /// Initialize the Compare.  Set the first character.  See if there are any 1 letter words
    /// for that character.
    /// </summary>
    /// <param name="firstChar">The first character in the word string.</param>
    /// <returns>True if a word was found.</returns>
    public static bool InitCompare(char firstChar)
    {
        InitChar = firstChar;
        //Get all words that start with the firstChar.
        CurrentWordList = MyDictionary[InitChar];
        ThisWord = new StringBuilder();
        ThisWord.Append(firstChar);
        if (CurrentWordList[0].Length == 1)
        {
            //Match.
            return true;
        }
        //No matches.
        return false;
    }
    /// <summary>
    /// Append this letter to our ThisWord.  See if there are any matching words.
    /// </summary>
    /// <param name="nextChar">The next character in the word string.</param>
    /// <returns>True if a word was found.</returns>
    public static bool NextCompare(char nextChar)
    {
        ThisWord.Append(nextChar);
        int currentIndex = ThisWord.Length - 1;
        if (FindRemainingWords(nextChar, currentIndex))
        {
            if (CurrentWordList[0].Length == currentIndex)
            {
                //Match.
                return true;
            }
        }
        //No matches.
        return false;
    }
    /// <summary>
    /// Trim down our CurrentWordList until it only contains words
    /// that at currIndex start with the currChar.
    /// </summary>
    /// <param name="currChar">The next letter in our ThisWord.</param>
    /// <param name="currIndex">The index of the letter.</param>
    /// <returns>True if there are words remaining in CurrentWordList.</returns>
    private static bool FindRemainingWords(char currChar, int currIndex)
    {
        //Null check.
        if (CurrentWordList == null || CurrentWordList.Count < 1)
        {
            return false;
        }
        bool doneSearching = false;
        while(!doneSearching)
        {
            int middleIndex = CurrentWordList.Count / 2;
            //TODO: test for CurrentWordList.count 2 or 1 ...
            //TODO: test for wordToCheck.length < curr index
            char middleLetter = CurrentWordList[middleIndex][currIndex];

            LetterPositionEnum returnEnum = GetLetterPosition(currChar, middleLetter);
            switch(returnEnum)
            {
                case LetterPositionEnum.Before:
                    CurrentWordList = CurrentWordList.GetRange(middleIndex, (CurrentWordList.Count - middleIndex));
                    break;
                case LetterPositionEnum.PREV:
                    CurrentWordList = CurrentWordList.GetRange(middleIndex, (CurrentWordList.Count - middleIndex));
                    break;
                case LetterPositionEnum.MATCH:
                    CurrentWordList = CurrentWordList.GetRange(middleIndex, (CurrentWordList.Count - middleIndex));
                    break;
                case LetterPositionEnum.NEXT:
                    CurrentWordList = CurrentWordList.GetRange(0, middleIndex);
                    break;
                case LetterPositionEnum.After:
                    CurrentWordList = CurrentWordList.GetRange(0, middleIndex);
                    break;
                default:
                    break;
            }
        }
        TrimWords(currChar, currIndex);
        //Null check.
        if (CurrentWordList == null || CurrentWordList.Count < 1)
        {
            return false;
        }
        //There are still words left in CurrentWordList.
        return true;
    }
    //Trim all words in CurrentWordList 
    //that are LetterPositionEnum.PREV and LetterPositionEnum.NEXT
    private static void TrimWords(char currChar, int currIndex)
    {
        int startIndex = 0;
        int endIndex = CurrentWordList.Count;
        bool startIndexFound = false;
        //Loop through all of the words.
        for ( int i = startIndex; i < endIndex; i++)
        {
            //If we havent found the start index then the first match of currChar
            //will be the start index.
             if( !startIndexFound &&  currChar == CurrentWordList[i][currIndex] )
            {
                startIndex = i;
                startIndexFound = true;
            }
             //If we have found the start index then the next letter that isnt 
             //currChar will be the end index.
             if( startIndexFound && currChar != CurrentWordList[i][currIndex])
            {
                endIndex = i;
                break;
            }
        }
        //Trim the words that dont start with currChar.
        CurrentWordList = CurrentWordList.GetRange(startIndex, endIndex);
    }

    //In order to find all words that begin with a given character, we should search
    //for the last word that begins with the previous character (PREV) and the 
    //first word that begins with the next character (NEXT).
    //Anything else Before or After that is trash and we will throw out.
    public enum LetterPositionEnum
    {
        Before,
        PREV,
        MATCH,
        NEXT,
        After
    };
    //We want to ignore all letters that come before this one.
    public static LetterPositionEnum GetLetterPosition(char currChar, char compareLetter)
    {
        switch (currChar)
        {
            case 'A':
                switch (compareLetter)
                {
                    case 'A': return LetterPositionEnum.MATCH;
                    case 'B': return LetterPositionEnum.NEXT;
                    case 'C': return LetterPositionEnum.After;
                    case 'D': return LetterPositionEnum.After;
                    case 'E': return LetterPositionEnum.After;
                    case 'F': return LetterPositionEnum.After;
                    case 'G': return LetterPositionEnum.After;
                    case 'H': return LetterPositionEnum.After;
                    case 'I': return LetterPositionEnum.After;
                    case 'J': return LetterPositionEnum.After;
                    case 'K': return LetterPositionEnum.After;
                    case 'L': return LetterPositionEnum.After;
                    case 'M': return LetterPositionEnum.After;
                    case 'N': return LetterPositionEnum.After;
                    case 'O': return LetterPositionEnum.After;
                    case 'P': return LetterPositionEnum.After;
                    case 'Q': return LetterPositionEnum.After;
                    case 'R': return LetterPositionEnum.After;
                    case 'S': return LetterPositionEnum.After;
                    case 'T': return LetterPositionEnum.After;
                    case 'U': return LetterPositionEnum.After;
                    case 'V': return LetterPositionEnum.After;
                    case 'W': return LetterPositionEnum.After;
                    case 'X': return LetterPositionEnum.After;
                    case 'Y': return LetterPositionEnum.After;
                    case 'Z': return LetterPositionEnum.After;
                    default: return LetterPositionEnum.After;
                }
            case 'B':
                switch (compareLetter)
                {
                    case 'A': return LetterPositionEnum.PREV;
                    case 'B': return LetterPositionEnum.MATCH;
                    case 'C': return LetterPositionEnum.NEXT;
                    case 'D': return LetterPositionEnum.After;
                    case 'E': return LetterPositionEnum.After;
                    case 'F': return LetterPositionEnum.After;
                    case 'G': return LetterPositionEnum.After;
                    case 'H': return LetterPositionEnum.After;
                    case 'I': return LetterPositionEnum.After;
                    case 'J': return LetterPositionEnum.After;
                    case 'K': return LetterPositionEnum.After;
                    case 'L': return LetterPositionEnum.After;
                    case 'M': return LetterPositionEnum.After;
                    case 'N': return LetterPositionEnum.After;
                    case 'O': return LetterPositionEnum.After;
                    case 'P': return LetterPositionEnum.After;
                    case 'Q': return LetterPositionEnum.After;
                    case 'R': return LetterPositionEnum.After;
                    case 'S': return LetterPositionEnum.After;
                    case 'T': return LetterPositionEnum.After;
                    case 'U': return LetterPositionEnum.After;
                    case 'V': return LetterPositionEnum.After;
                    case 'W': return LetterPositionEnum.After;
                    case 'X': return LetterPositionEnum.After;
                    case 'Y': return LetterPositionEnum.After;
                    case 'Z': return LetterPositionEnum.After;
                    default: return LetterPositionEnum.After;
                }
            case 'C':
                switch (compareLetter)
                {
                    case 'A': return LetterPositionEnum.Before;
                    case 'B': return LetterPositionEnum.PREV;
                    case 'C': return LetterPositionEnum.MATCH;
                    case 'D': return LetterPositionEnum.NEXT;
                    case 'E': return LetterPositionEnum.After;
                    case 'F': return LetterPositionEnum.After;
                    case 'G': return LetterPositionEnum.After;
                    case 'H': return LetterPositionEnum.After;
                    case 'I': return LetterPositionEnum.After;
                    case 'J': return LetterPositionEnum.After;
                    case 'K': return LetterPositionEnum.After;
                    case 'L': return LetterPositionEnum.After;
                    case 'M': return LetterPositionEnum.After;
                    case 'N': return LetterPositionEnum.After;
                    case 'O': return LetterPositionEnum.After;
                    case 'P': return LetterPositionEnum.After;
                    case 'Q': return LetterPositionEnum.After;
                    case 'R': return LetterPositionEnum.After;
                    case 'S': return LetterPositionEnum.After;
                    case 'T': return LetterPositionEnum.After;
                    case 'U': return LetterPositionEnum.After;
                    case 'V': return LetterPositionEnum.After;
                    case 'W': return LetterPositionEnum.After;
                    case 'X': return LetterPositionEnum.After;
                    case 'Y': return LetterPositionEnum.After;
                    case 'Z': return LetterPositionEnum.After;
                    default: return LetterPositionEnum.After;
                }
//etc.  Stack Overflow limits characters to 30,000 contact me for full switch case.
   default: return LetterPositionEnum.After;
        }
    }
}

好的,这是我想出的最终解决方案,我不确定它是否是最优的最优的,但似乎是相当快,我喜欢的逻辑和代码的简洁。

基本上在应用程序启动时,你传递一个任意长度的单词列表给InitWords。这将对单词进行排序,并将它们放入有26个键的字典中,每个键代表字母表中的每个字母。

然后在游戏过程中,你将遍历字符集,总是从第一个字母开始,然后是第一个和第二个字母,依此类推。整个过程中,你都在减少CurrentWordList中的单词数量。

如果你有字符串'icedgt'。你会调用InitCompare with 'i',这会从MyDictionary中抓取KeyValuePair with Key 'i',然后你会看到第一个单词的长度是否为1,因为它们已经按字母顺序排列了,单词'i'将是第一个单词。然后在下一次迭代时,将'c'传递给NextCompare,这再次通过使用Linq只返回第二个字符为'c'的单词来减小列表大小。然后接下来你会做另一个NextCompare并传入'e',再次使用Linq减少CurrentWordList中的单词数量。

在第一次迭代之后你的CurrentWordList有每个以'i'开头的单词,在NextCompare中你会有每个以'ic'开头的单词在NextCompare中你会有一个子集每个单词以'ice'开头等等。

我不确定Linq是否能在速度方面胜过我的手动巨大的Switch Case,但它简单而优雅。为此我很高兴。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Xuzzle.Code
{
public class CompareHelper
{
    //Should always be sorted in alphabetical order.
    public static Dictionary<char, List<string>> MyDictionary;
    public static List<string> CurrentWordList;
    //The word we are trying to find matches for.
    public static char InitChar;
    public static StringBuilder ThisWord;
    /// <summary>
    /// Init MyDictionary with the list of words passed in.  Make a new
    /// key value pair with each Letter.
    /// </summary>
    /// <param name="listOfWords"></param>
    public static void InitWords(List<string> listOfWords)
    {
        MyDictionary = new Dictionary<char, List<string>>();
        foreach (char currChar in LetterHelper.Alphabet)
        {
            var wordsParsed = listOfWords.Where(currWord => char.ToUpper(currWord[0]) == currChar).ToArray();
            Array.Sort(wordsParsed);
            MyDictionary.Add(currChar, wordsParsed.ToList());
        }
    }
    /// <summary>
    /// Initialize the Compare.  Set the first character.  See if there are any 1 letter words
    /// for that character.
    /// </summary>
    /// <param name="firstChar">The first character in the word string.</param>
    /// <returns>True if a word was found.</returns>
    public static bool InitCompare(char firstChar)
    {
        InitChar = firstChar;
        //Get all words that start with the firstChar.
        CurrentWordList = MyDictionary[InitChar];
        ThisWord = new StringBuilder();
        ThisWord.Append(firstChar);
        if (CurrentWordList[0].Length == 1)
        {
            //Match.
            return true;
        }
        //No matches.
        return false;
    }
    /// <summary>
    /// Append this letter to our ThisWord.  See if there are any matching words.
    /// </summary>
    /// <param name="nextChar">The next character in the word string.</param>
    /// <returns>True if a word was found.</returns>
    public static bool NextCompare(char nextChar)
    {
        ThisWord.Append(nextChar);
        int currentIndex = ThisWord.Length - 1;
        if (CurrentWordList != null && CurrentWordList.Count > 0)
        {
            CurrentWordList = CurrentWordList.Where(word => (word.Length > currentIndex && word[currentIndex] == nextChar)).ToList();
            if (CurrentWordList != null && CurrentWordList.Count > 0)
            {
                if (CurrentWordList[0].Length == ThisWord.Length)
                {
                    //Match.
                    return true;
                }
            }
        }
        //No matches.
        return false;
    }
}
}