在球体 C# 上拉伸的高度图上查找高度

本文关键字:高度 查找 | 更新日期: 2023-09-27 17:55:08

我正在寻找一些数学帮助。我有一个游戏,生成一个 2D 高度图,然后使用长度/方向公式在球体上拉伸。现在我需要知道如何计算高度图上 2 点之间的高度。

我所知道的:

  • 保存高度贴图的数组
  • 度与对象的角度
  • 高度图上有多少个点

我的问题看起来有点像这样:

图像

更多图片

红线和蓝线是 2 个高度图点,浅蓝色是我想计算高度的地方。

这是我当前的代码,但它不能很好地工作。

public double getheight(double angle)
{
    //find out angle between 2 heightmap point
    double offset = MathHelper.TwoPi / (heightmap.Length - 1);
    //total brainfart attempt
    double lowerAngle = offset * angle;
    double upperAngle = offset * angle + offset;
    //find heights
    double height1 = heightmap[(int)lowerAngle];
    double height2 = heightmap[(int)upperAngle];
    //find offset angle
    double u = angle - lowerAngle / (upperAngle - lowerAngle);
    //return the height
    return height1 + (height1 - height2) * u;
}

从我的植被代码来看,这似乎工作正常,但对于单位等来说很粗糙,因为它们在移动时会上下跳跃,因为它只使用 1 个高度图点。

double[] hMap = planet.getHeightMap();
double i = hMap.Length / (Math.PI * 2);
this.height = hMap[(int)(angle * i)];

在球体 C# 上拉伸的高度图上查找高度

编辑:基于其他问题信息的末尾示例

对我来说听起来像线性插值 - 如果你从 2d 的角度来看,你有两点:

(x1, y1) = point one on heightmap
(x2, y2) = point two on heightmap

还有一个点介于(x1,x2)之间的未知高度:

pu = (xu, yu)

LERP 的通用公式为:

pu = p0 + (p1 - p0) * u

哪里:

  • p0 = 第一个值
  • p1 = 第二个值
  • u = % 未知点位于(p0,p1)

在这里,我们会说p0 == y2p1 == y1 .现在我们需要确定未知点在 x1x2 之间"多远"——如果你知道两个高度图点的角度,这很容易:

u = ang(xu) - ang(x1) / (ang(x2) - ang(x1))

或者,您可以将角度投影到Max(y1,y2)并以这种方式获得"未知 x pos",然后计算上述值。

因此,让我们尝试一个人为的例子:

p1 = point one in map = (1,2) therefore ang(p1) ~ 57 degrees
p2 = point two in map = (2,4) therefore ang(p2) ~ 114 degrees

请注意,此处的"X 轴"是沿球体表面的,"Y 轴"是远离中心的距离。

pu = object location = py @angle 100 degrees ~ 1.74 radians
px = (1.74 rad - 1 rad ) / (2 rad - 1 rad) = 0.74 / 1.0 = 0.74 => 74%
py = y0 + (y1 - y0) * u
   = 2 + (4 - 2) * 0.74
   = 2.96

希望我没有在某个地方掉落或放错一个标志...... :)

好的,您的示例代码 - 我已经对其进行了一点调整,这是我提出的:

首先,让我们定义一些我自己的帮助程序:

public static class MathHelper
{
    public const double TwoPi = Math.PI * 2.0;
    public static double DegToRad(double deg)
    {
        return (TwoPi / 360.0) * deg;
    }
    public static double RadToDeg(double rad)
    {
        return (360.0 / TwoPi) * rad;
    }
    // given an upper/lower bounds, "clamp" the value into that
    // range, wrapping over to lower if higher than upper, and
    // vice versa    
    public static int WrapClamp(int value, int lower, int upper)
    {
        return value > upper ? value - upper - 1
            : value < lower ? upper - value - 1
            : value;
    }
}

我们的测试设置:

void Main()
{
    var random = new Random();
    // "sea level"
    var baseDiameter = 10;
    // very chaotic heightmap
    heightmap = Enumerable
        .Range(0, 360)
        .Select(_ => random.NextDouble() * baseDiameter)
        .ToArray();
    // let's walk by half degrees, since that's roughly how many points we have
    for(double i=0;i<360;i+=0.5)
    {
        var angleInDegrees = i;
        var angleInRads = MathHelper.DegToRad(i);
        Console.WriteLine("Height at angle {0}°({1} rad):{2} (using getheight:{3})",
            angleInDegrees,
            angleInRads,
            heightmap[(int)angleInDegrees],
            getheight(angleInRads));
    }
}
double[] heightmap;

而我们的"获取高度"方法:

// assume: input angle is in radians
public double getheight(double angle)
{
    //find out angle between 2 heightmap point
    double dTheta = MathHelper.TwoPi / (heightmap.Length);
    // our "offset" will be how many dThetas we are
    double offset = angle / dTheta;
    // Figure out two reference points in heightmap
    // THESE MAY BE THE SAME POINT, if angle ends up
    // landing on a heightmap index!
    int lowerAngle = (int)offset;
    int upperAngle = (int)Math.Round(
        offset, 
        0, 
        MidpointRounding.AwayFromZero);
    // find closest heightmap points to angle, wrapping
    // around if we go under 0 or over max
    int closestPointIndex = MathHelper.WrapClamp(
        lowerAngle, 
        0, 
        heightmap.Length-1);
    int nextPointIndex = MathHelper.WrapClamp(
        upperAngle, 
        0, 
        heightmap.Length-1);
    //find heights
    double height1 = heightmap[closestPointIndex];
    double height2 = heightmap[nextPointIndex];
    // percent is (distance from angle to closest angle) / (angle "step" per heightmap point)
    double percent = (angle - (closestPointIndex * dTheta)) / dTheta;
    // find lerp height = firstvalue + (diff between values) * percent
    double lerp = Math.Abs(height1 + (height2 - height1) * percent);
    // Show what we're doing
    Console.WriteLine("Delta ang:{0:f3}, Offset={1:f3} => compare indices:[{2}, {3}]", 
        dTheta, 
        offset, 
        closestPointIndex, 
        nextPointIndex);
    Console.WriteLine("Lerping {0:p} between heights {1:f4} and {2:f4} - lerped height:{3:f4}", 
        percent,
        height1, 
        height2,
        lerp);
    return lerp;
}