从向量列表中创建所有可能组合的算法函数
本文关键字:组合 算法 函数 有可能 向量 列表 创建 | 更新日期: 2023-09-27 18:07:04
我有一个int <List<List<int>>
的列表,它代表一个方向向量
(1,2)
(1,3)
(2,4)
(3,5)
(4,3)
(5,1)
我想用这些向量创建所有可能的路线,这样最后的路线就不会形成一个无限的圆圈
:
(1,2)
(1,3)
(2,4)
(3,5)
(4,3)
(5,1)
(1,2,4)
(1,2,4,3)
(1,2,4,3,5)
(1,2,4,3,5,1)
(1,3,5)
(1,3,5,1)
(2,4,3)
(2,4,3,5)
(2,4,3,5,1)
(2,4,3,5,1,2)
(3,5,1)
etc...
我还没有找到做这件事的有效方法。
我以前尝试过使用
创建所有可能的组合 private IEnumerable<int> constructSetFromBits(int i)
{
for (int n = 0; i != 0; i /= 2, n++)
{
if ((i & 1) != 0)
yield return n;
}
}
public IEnumerable<List<T>> ProduceWithRecursion(List<T> allValues)
{
for (var i = 0; i < (1 << allValues.Count); i++)
{
yield return ConstructSetFromBits(i).Select(n => allValues[n]).ToList();
}
}
工作得很好,但忽略了问题的方向方面。
方法不一定是递归的,尽管我认为这可能是最明智的方法
看起来像广度优先搜索:
private static IEnumerable<List<int>> BreadthFirstSearch(IEnumerable<List<int>> source) {
List<List<int>> frontier = source
.Select(item => item.ToList())
.ToList();
while (frontier.Any()) {
for (int i = frontier.Count - 1; i >= 0; --i) {
List<int> path = frontier[i];
yield return path;
frontier.RemoveAt(i);
// prevent loops
if (path.IndexOf(path[path.Count - 1]) < path.Count - 1)
continue;
int lastVertex = path[path.Count - 1];
var NextVertexes = source
.Where(edge => edge[0] == lastVertex)
.Select(edge => edge[1])
.Distinct();
foreach (var nextVertex in NextVertexes) {
var nextPath = path.ToList();
nextPath.Add(nextVertex);
frontier.Add(nextPath);
}
}
}
}
测试List<List<int>> list = new List<List<int>>() {
new List<int>() {1, 2},
new List<int>() {1, 3},
new List<int>() {2, 4},
new List<int>() {3, 5},
new List<int>() {4, 3},
new List<int>() {5, 1},
};
var result = BreadthFirstSearch(list)
.Select(way => string.Format("({0})", string.Join(",", way)));
Console.Write(string.Join(Environment.NewLine, result));
结果:(5,1)
(4,3)
(3,5)
(2,4)
(1,3)
(1,2)
(1,2,4)
(1,3,5)
(2,4,3)
(3,5,1)
(4,3,5)
(5,1,3)
(5,1,2)
(5,1,2,4)
(5,1,3,5)
(4,3,5,1)
(3,5,1,3)
(3,5,1,2)
(2,4,3,5)
(1,3,5,1)
(1,2,4,3)
(1,2,4,3,5)
(2,4,3,5,1)
(3,5,1,2,4)
(4,3,5,1,3)
(4,3,5,1,2)
(5,1,2,4,3)
(5,1,2,4,3,5)
(4,3,5,1,2,4)
(3,5,1,2,4,3)
(2,4,3,5,1,3)
(2,4,3,5,1,2)
(1,2,4,3,5,1)